On this page
cacoshf, cacosh, cacoshl
Defined in header <complex.h> | 
      ||
|---|---|---|
 | 
      (1) | (since C99) | 
 | 
      (2) | (since C99) | 
 | 
      (3) | (since C99) | 
Defined in header <tgmath.h> | 
      ||
 | 
      (4) | (since C99) | 
z with branch cut at values less than 1 along the real axis.
  z has type long double complex, cacoshl is called. if z has type double complex, cacosh is called, if z has type float complex, cacoshf is called. If z is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.
  Parameters
| z | - | complex argument | 
Return value
The complex arc hyperbolic cosine of z in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
cacosh(conj(z)) == conj(cacosh(z))- If 
zis±0+0i, the result is+0+iπ/2 - If 
zis+x+∞i(for any finite x), the result is+∞+iπ/2 - If 
zis+x+NaNi(for non-zero finite x), the result isNaN+NaNiandFE_INVALIDmay be raised. - If 
zis0+NaNi, the result isNaN±iπ/2, where the sign of the imaginary part is unspecified - If 
zis-∞+yi(for any positive finite y), the result is+∞+iπ - If 
zis+∞+yi(for any positive finite y), the result is+∞+0i - If 
zis-∞+∞i, the result is+∞+3iπ/4 - If 
zis+∞+∞i, the result is+∞+iπ/4 - If 
zis±∞+NaNi, the result is+∞+NaNi - If 
zisNaN+yi(for any finite y), the result isNaN+NaNiandFE_INVALIDmay be raised. - If 
zisNaN+∞i, the result is+∞+NaNi - If 
zisNaN+NaNi, the result isNaN+NaNi 
Notes
Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √z+1 √z-1) For any z, acosh(z) =
√z-1/√1-z acos(z), or simply i acos(z) in the upper half of the complex plane.Example
#include <stdio.h>
#include <complex.h>
 
int main(void)
{
    double complex z = cacosh(0.5);
    printf("cacosh(+0.5+0i) = %f%+fi\n", creal(z), cimag(z));
 
    double complex z2 = conj(0.5); // or cacosh(CMPLX(0.5, -0.0)) in C11
    printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));
 
    // in upper half-plane, acosh(z) = i*acos(z) 
    double complex z3 = casinh(1+I);
    printf("casinh(1+1i) = %f%+fi\n", creal(z3), cimag(z3));
    double complex z4 = I*casin(1+I);
    printf("I*asin(1+1i) = %f%+fi\n", creal(z4), cimag(z4));
}
   Output:
cacosh(+0.5+0i) = 0.000000-1.047198i
cacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000i
casinh(1+1i) = 1.061275+0.666239i
I*asin(1+1i) = -1.061275+0.666239i
   References
- C11 standard (ISO/IEC 9899:2011):
 - 7.3.6.1 The cacosh functions (p: 192)
 - 7.25 Type-generic math <tgmath.h> (p: 373-375)
 - G.6.2.1 The cacosh functions (p: 539-540)
 - G.7 Type-generic math <tgmath.h> (p: 545)
 - C99 standard (ISO/IEC 9899:1999):
 - 7.3.6.1 The cacosh functions (p: 174)
 - 7.22 Type-generic math <tgmath.h> (p: 335-337)
 - G.6.2.1 The cacosh functions (p: 474-475)
 - G.7 Type-generic math <tgmath.h> (p: 480)
 
See also
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex arc cosine  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex arc hyperbolic sine  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex arc hyperbolic tangent  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex hyperbolic cosine  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x} }\)arcosh(x))  (function)  | 
     
C++ documentation for acosh | 
     |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
 https://en.cppreference.com/w/c/numeric/complex/cacosh