On this page
clogf, clog, clogl
Defined in header <complex.h> | 
      ||
|---|---|---|
 | 
      (1) | (since C99) | 
 | 
      (2) | (since C99) | 
 | 
      (3) | (since C99) | 
Defined in header <tgmath.h> | 
      ||
 | 
      (4) | (since C99) | 
1-3) Computes the complex natural (base-e) logarithm of 
  z with branch cut along the negative real axis.
  4) Type-generic macro: If 
  z has type long double complex, clogl is called. if z has type double complex, clog is called, if z has type float complex, clogf is called. If z is real or integer, then the macro invokes the corresponding real function (logf, log, logl). If z is imaginary, the corresponding complex number version is called.
  Parameters
| z | - | complex argument | 
Return value
If no errors occur, the complex natural logarithm of z is returned, in the range of a strip in the interval [−iπ, +iπ] along the imaginary axis and mathematically unbounded along the real axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- The function is continuous onto the branch cut taking into account the sign of imaginary part
 clog(conj(z)) == conj(clog(z))- If 
zis-0+0i, the result is-∞+πiandFE_DIVBYZEROis raised - If 
zis+0+0i, the result is-∞+0iandFE_DIVBYZEROis raised - If 
zisx+∞i(for any finite x), the result is+∞+πi/2 - If 
zisx+NaNi(for any finite x), the result isNaN+NaNiandFE_INVALIDmay be raised - If 
zis-∞+yi(for any finite positive y), the result is+∞+πi - If 
zis+∞+yi(for any finite positive y), the result is+∞+0i - If 
zis-∞+∞i, the result is+∞+3πi/4 - If 
zis+∞+∞i, the result is+∞+πi/4 - If 
zis±∞+NaNi, the result is+∞+NaNi - If 
zisNaN+yi(for any finite y), the result isNaN+NaNiandFE_INVALIDmay be raised - If 
zisNaN+∞i, the result is+∞+NaNi - If 
zisNaN+NaNi, the result isNaN+NaNi 
Notes
The natural logarithm of a complex number z with polar coordinate components (r,θ) equals ln r + i(θ+2nπ), with the principal value ln r + iθ
Example
#include <stdio.h>
#include <math.h>
#include <complex.h>
 
int main(void)
{
    double complex z = clog(I); // r = 1, θ = pi/2
    printf("2*log(i) = %.1f%+fi\n", creal(2*z), cimag(2*z));
 
    double complex z2 = clog(sqrt(2)/2 + sqrt(2)/2*I); // r = 1, θ = pi/4
    printf("4*log(sqrt(2)/2+sqrt(2)i/2) = %.1f%+fi\n", creal(4*z2), cimag(4*z2));
 
    double complex z3 = clog(-1); // r = 1, θ = pi
    printf("log(-1+0i) = %.1f%+fi\n", creal(z3), cimag(z3));
 
    double complex z4 = clog(conj(-1)); // or clog(CMPLX(-1, -0.0)) in C11
    printf("log(-1-0i) (the other side of the cut) = %.1f%+fi\n", creal(z4), cimag(z4));
}
   Output:
2*log(i) = 0.0+3.141593i
4*log(sqrt(2)/2+sqrt(2)i/2) = 0.0+3.141593i
log(-1+0i) = 0.0+3.141593i
log(-1-0i) (the other side of the cut) = 0.0-3.141593i
   References
- C11 standard (ISO/IEC 9899:2011):
 - 7.3.7.2 The clog functions (p: 195)
 - 7.25 Type-generic math <tgmath.h> (p: 373-375)
 - G.6.3.2 The clog functions (p: 543-544)
 - G.7 Type-generic math <tgmath.h> (p: 545)
 - C99 standard (ISO/IEC 9899:1999):
 - 7.3.7.2 The clog functions (p: 176-177)
 - 7.22 Type-generic math <tgmath.h> (p: 335-337)
 - G.6.3.2 The clog functions (p: 478-479)
 - G.7 Type-generic math <tgmath.h> (p: 480)
 
See also
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex base-e exponential  (function)  | 
     
| 
       
        (C99)(C99)
         | 
      computes natural (base-e) logarithm (\({\small \ln{x} }\)ln(x))  (function)  | 
     
C++ documentation for log | 
     |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
 https://en.cppreference.com/w/c/numeric/complex/clog