On this page
csinhf, csinh, csinhl
Defined in header <complex.h> | 
      ||
|---|---|---|
 | 
      (1) | (since C99) | 
 | 
      (2) | (since C99) | 
 | 
      (3) | (since C99) | 
Defined in header <tgmath.h> | 
      ||
 | 
      (4) | (since C99) | 
1-3) Computes the complex hyperbolic sine of 
  z.
  4) Type-generic macro: If 
  z has type long double complex, csinhl is called. if z has type double complex, csinh is called, if z has type float complex, csinhf is called. If z is real or integer, then the macro invokes the corresponding real function (sinhf, sinh, sinhl). If z is imaginary, then the macro invokes the corresponding real version of the function sin, implementing the formula sinh(iy) = i sin(y), and the return type is imaginary.
  Parameters
| z | - | complex argument | 
Return value
If no errors occur, complex hyperbolic sine of z is returned
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
csinh(conj(z)) == conj(csinh(z))csinh(z) == -csinh(-z)- If 
zis+0+0i, the result is+0+0i - If 
zis+0+∞i, the result is±0+NaNi(the sign of the real part is unspecified) andFE_INVALIDis raised - If 
zis+0+NaNi, the result is±0+NaNi - If 
zisx+∞i(for any positive finite x), the result isNaN+NaNiandFE_INVALIDis raised - If 
zisx+NaNi(for any positive finite x), the result isNaN+NaNiandFE_INVALIDmay be raised - If 
zis+∞+0i, the result is+∞+0i - If 
zis+∞+yi(for any positive finite y), the result is+∞cis(y) - If 
zis+∞+∞i, the result is±∞+NaNi(the sign of the real part is unspecified) andFE_INVALIDis raised - If 
zis+∞+NaNi, the result is±∞+NaNi(the sign of the real part is unspecified) - If 
zisNaN+0i, the result isNaN+0i - If 
zisNaN+yi(for any finite nonzero y), the result isNaN+NaNiandFE_INVALIDmay be raised - If 
zisNaN+NaNi, the result isNaN+NaNi 
where cis(y) is cos(y) + i sin(y)
Notes
Mathematical definition of hyperbolic sine is sinh z = ez-e-z/2Hyperbolic sine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi
Example
#include <stdio.h>
#include <math.h>
#include <complex.h>
 
int main(void)
{
    double complex z = csinh(1);  // behaves like real sinh along the real line
    printf("sinh(1+0i) = %f%+fi (sinh(1)=%f)\n", creal(z), cimag(z), sinh(1));
 
    double complex z2 = csinh(I); // behaves like sine along the imaginary line
    printf("sinh(0+1i) = %f%+fi ( sin(1)=%f)\n", creal(z2), cimag(z2), sin(1));
}
   Output:
sinh(1+0i) = 1.175201+0.000000i (sinh(1)=1.175201)
sinh(0+1i) = 0.000000+0.841471i ( sin(1)=0.841471)
   References
- C11 standard (ISO/IEC 9899:2011):
 - 7.3.6.5 The csinh functions (p: 194)
 - 7.25 Type-generic math <tgmath.h> (p: 373-375)
 - G.6.2.5 The csinh functions (p: 541-542)
 - G.7 Type-generic math <tgmath.h> (p: 545)
 - C99 standard (ISO/IEC 9899:1999):
 - 7.3.6.5 The csinh functions (p: 175-176)
 - 7.22 Type-generic math <tgmath.h> (p: 335-337)
 - G.6.2.5 The csinh functions (p: 476-477)
 - G.7 Type-generic math <tgmath.h> (p: 480)
 
See also
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex hyperbolic cosine  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex hyperbolic tangent  (function)  | 
     
| 
       
        (C99)(C99)(C99)
         | 
      computes the complex arc hyperbolic sine  (function)  | 
     
| 
       
        (C99)(C99)
         | 
      computes hyperbolic sine (\({\small\sinh{x} }\)sinh(x))  (function)  | 
     
C++ documentation for sinh | 
     |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
 https://en.cppreference.com/w/c/numeric/complex/csinh