On this page
std::is_sorted_until
Defined in header <algorithm> |
||
---|---|---|
(1) | ||
|
(since C++11) (until C++20) |
|
|
(since C++20) | |
|
(2) | (since C++17) |
(3) | ||
|
(since C++11) (until C++20) |
|
|
(since C++20) | |
|
(4) | (since C++17) |
Examines the range [
first
,
last
)
and finds the largest range beginning at first
in which the elements are sorted in non-descending order.
A sequence is sorted with respect to a comparator comp
if for any iterator it
pointing to the sequence and any non-negative integer n
such that it + n
is a valid iterator pointing to an element of the sequence, comp(*(it + n), *it)
evaluates to false
.
operator<
.
comp
.
policy
. These overloads do not participate in overload resolution unless
|
(until C++20) |
|
(since C++20) |
Parameters
first, last | - | the range of elements to examine |
policy | - | the execution policy to use. See execution policy for details. |
comp | - | comparison function object (i.e. an object that satisfies the requirements of Compare) which returns true if the first argument is less than (i.e. is ordered before) the second. The signature of the comparison function should be equivalent to the following:
While the signature does not need to have const&, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) |
Type requirements | ||
-ForwardIt must meet the requirements of LegacyForwardIterator. |
Return value
The upper bound of the largest range beginning at first
in which the elements are sorted in ascending order. That is, the last iterator it
for which range [
first
,
it
)
is sorted.
Returns last
for empty ranges and ranges of length one.
Complexity
Linear in the distance between first
and last
.
Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies,std::terminate
is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory,
std::bad_alloc
is thrown.
Possible implementation
See also the implementations in libstdc++ and libc++.
is_sorted_until (1) |
---|
|
is_sorted_until (2) |
|
Example
#include <algorithm>
#include <cassert>
#include <iostream>
#include <iterator>
#include <random>
#include <string>
int main()
{
std::random_device rd;
std::mt19937 g(rd());
const int N = 6;
int nums[N] = {3, 1, 4, 1, 5, 9};
const int min_sorted_size = 4;
for (int sorted_size = 0; sorted_size < min_sorted_size;)
{
std::shuffle(nums, nums + N, g);
int *const sorted_end = std::is_sorted_until(nums, nums + N);
sorted_size = std::distance(nums, sorted_end);
assert(sorted_size >= 1);
for (const auto i : nums)
std::cout << i << ' ';
std::cout << ": " << sorted_size << " initial sorted elements\n"
<< std::string(sorted_size * 2 - 1, '^') << '\n';
}
}
Possible output:
4 1 9 5 1 3 : 1 initial sorted elements
^
4 5 9 3 1 1 : 3 initial sorted elements
^^^^^
9 3 1 4 5 1 : 1 initial sorted elements
^
1 3 5 4 1 9 : 3 initial sorted elements
^^^^^
5 9 1 1 3 4 : 2 initial sorted elements
^^^
4 9 1 5 1 3 : 2 initial sorted elements
^^^
1 1 4 9 5 3 : 4 initial sorted elements
^^^^^^^
See also
(C++11)
|
checks whether a range is sorted into ascending order (function template) |
(C++20)
|
finds the largest sorted subrange (niebloid) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/is_sorted_until