On this page
std::ranges::lower_bound
Defined in header <algorithm> |
||
|---|---|---|
| Call signature | ||
|
(1) | (since C++20) |
|
(2) | (since C++20) |
[first, last) that is not less than (i.e. greater or equal to) value, or last if no such element is found. The range [first, last) must be partitioned with respect to the expression std::invoke(comp, std::invoke(proj, element), value), i.e., all elements for which the expression is true must precede all elements for which the expression is false. A fully-sorted range meets this criterion.
r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
| first, last | - | iterator-sentinel pair defining the partially-ordered range to examine |
| r | - | the partially-ordered range to examine |
| value | - | value to compare the projected elements to |
| comp | - | comparison predicate to apply to the projected elements |
| proj | - | projection to apply to the elements |
Return value
Iterator pointing to the first element that is not less than value, or last if no such element is found.
Complexity
The number of comparisons and applications of the projection performed are logarithmic in the distance between first and last (at most log2(last - first) + O(1) comparisons and applications of the projection). However, for an iterator that does not model random_access_iterator, the number of iterator increments is linear.
Possible implementation
|
Example
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
namespace ranges = std::ranges;
template<std::forward_iterator I, std::sentinel_for<I> S, class T,
class Proj = std::identity,
std::indirect_strict_weak_order<
const T*,
std::projected<I, Proj>> Comp = ranges::less>
constexpr
I binary_find(I first, S last, const T& value, Comp comp = {}, Proj proj = {})
{
first = ranges::lower_bound(first, last, value, comp, proj);
return first != last && !comp(value, proj(*first)) ? first : last;
}
int main()
{
std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
// ^^^^^^^^^^
auto lower = ranges::lower_bound(data, 4);
auto upper = ranges::upper_bound(data, 4);
std::cout << "found a range [" << ranges::distance(data.cbegin(), lower)
<< ", " << ranges::distance(data.cbegin(), upper) << ") = { ";
ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
std::cout << "}\n";
// classic binary search, returning a value only if it is present
data = {1, 2, 4, 8, 16};
// ^
auto it = binary_find(data.cbegin(), data.cend(), 8); // '5' would return end()
if (it != data.cend())
std::cout << *it << " found at index "<< ranges::distance(data.cbegin(), it);
}
Output:
found a range [6, 10) = { 4 4 4 4 }
8 found at index 3
See also
|
(C++20)
|
returns range of elements matching a specific key (niebloid) |
|
(C++20)
|
divides a range of elements into two groups (niebloid) |
|
(C++20)
|
locates the partition point of a partitioned range (niebloid) |
|
(C++20)
|
returns an iterator to the first element greater than a certain value (niebloid) |
| returns an iterator to the first element not less than the given value (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/lower_bound