On this page
std.complex
This module contains the Complex
type, which is used to represent complex numbers, along with related mathematical operations and functions.
Complex
will eventually replace the built-in types cfloat
, cdouble
, creal
, ifloat
, idouble
, and ireal
.
- Authors:
- Lars Tandle Kyllingstad, Don Clugston
- License:
- Boost License 1.0
- Source
- std/complex.d
-
pure nothrow @nogc @safe auto complex(R)(const R re)
Constraints: if (is(R : double));
pure nothrow @nogc @safe auto complex(R, I)(const R re, const I im)
Constraints: if (is(R : double) && is(I : double)); -
Helper function that returns a complex number with the specified real and imaginary parts.
- Parameters:
-
R (template parameter) type of real part of complex number I (template parameter) type of imaginary part of complex number R re
real part of complex number to be constructed I im
(optional) imaginary part of complex number, 0 if omitted.
- Returns:
Complex
instance with real and imaginary parts set to the values provided as input. If neitherre
norim
are floating-point numbers, the return type will beComplex!double
. Otherwise, the return type is deduced usingstd.traits.CommonType!(R, I)
.
- Examples:
-
auto a = complex(1.0); static assert(is(typeof(a) == Complex!double)); writeln(a.re); // 1.0 writeln(a.im); // 0.0 auto b = complex(2.0L); static assert(is(typeof(b) == Complex!real)); writeln(b.re); // 2.0L writeln(b.im); // 0.0L auto c = complex(1.0, 2.0); static assert(is(typeof(c) == Complex!double)); writeln(c.re); // 1.0 writeln(c.im); // 2.0 auto d = complex(3.0, 4.0L); static assert(is(typeof(d) == Complex!real)); writeln(d.re); // 3.0 writeln(d.im); // 4.0L auto e = complex(1); static assert(is(typeof(e) == Complex!double)); writeln(e.re); // 1 writeln(e.im); // 0 auto f = complex(1L, 2); static assert(is(typeof(f) == Complex!double)); writeln(f.re); // 1L writeln(f.im); // 2 auto g = complex(3, 4.0L); static assert(is(typeof(g) == Complex!real)); writeln(g.re); // 3 writeln(g.im); // 4.0L
- struct Complex(T) if (isFloatingPoint!T);
-
A complex number parametrised by a type
T
, which must be eitherfloat
,double
orreal
.- T re;
-
The real part of the number.
- T im;
-
The imaginary part of the number.
-
const @safe string toString();
const void toString(Writer, Char)(scope Writer w, ref scope const FormatSpec!Char formatSpec)
Constraints: if (isOutputRange!(Writer, const(Char)[])); -
Converts the complex number to a string representation.
The second form of this function is usually not called directly; instead, it is used via
std.string.format
, as shown in the examples below. Supported format characters are 'e', 'f', 'g', 'a', and 's'.
See thestd.format
andstd.string.format
documentation for more information.- Examples:
-
auto c = complex(1.2, 3.4); // Vanilla toString formatting: writeln(c.toString()); // "1.2+3.4i" // Formatting with std.string.format specs: the precision and width // specifiers apply to both the real and imaginary parts of the // complex number. import std.format : format; writeln(format("%.2f", c)); // "1.20+3.40i" writeln(format("%4.1f", c)); // " 1.2+ 3.4i"
-
this(R : T)(Complex!R z);
this(Rx : T, Ry : T)(const Rx x, const Ry y);
this(R : T)(const R r); -
Construct a complex number with the specified real and imaginary parts. In the case where a single argument is passed that is not complex, the imaginary part of the result will be zero.
- pure nothrow @nogc @safe T abs(T)(Complex!T z);
-
- Parameters:
-
Complex!T z
A complex number.
- Returns:
-
The absolute value (or modulus) of
z
.
- Examples:
-
static import std.math; writeln(abs(complex(1.0))); // 1.0 writeln(abs(complex(0.0, 1.0))); // 1.0 writeln(abs(complex(1.0L, -2.0L))); // std.math.sqrt(5.0L)
-
pure nothrow @nogc @safe T sqAbs(T)(Complex!T z);
pure nothrow @nogc @safe T sqAbs(T)(const T x)
Constraints: if (isFloatingPoint!T); -
- Parameters:
-
Complex!T z
A complex number. T x
A real number.
- Returns:
-
The squared modulus of
z
. For genericity, if called on a real number, returns its square.
- Examples:
-
import std.math; writeln(sqAbs(complex(0.0))); // 0.0 writeln(sqAbs(complex(1.0))); // 1.0 writeln(sqAbs(complex(0.0, 1.0))); // 1.0 assert(approxEqual(sqAbs(complex(1.0L, -2.0L)), 5.0L)); assert(approxEqual(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); assert(approxEqual(sqAbs(complex(1.0f,-1.0f)), 2.0f));
- pure nothrow @nogc @safe T arg(T)(Complex!T z);
-
- Parameters:
-
Complex!T z
A complex number.
- Returns:
-
The argument (or phase) of
z
.
- Examples:
-
import std.math; writeln(arg(complex(1.0))); // 0.0 writeln(arg(complex(0.0L, 1.0L))); // PI_2 writeln(arg(complex(1.0L, 1.0L))); // PI_4
- pure nothrow @nogc @safe T norm(T)(Complex!T z);
-
Extracts the norm of a complex number.
- Parameters:
-
Complex!T z
A complex number
- Returns:
-
The squared magnitude of
z
.
- Examples:
-
import std.math : isClose, PI; writeln(norm(complex(3.0, 4.0))); // 25.0 writeln(norm(fromPolar(5.0, 0.0))); // 25.0 assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L)); assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L));
- pure nothrow @nogc @safe Complex!T conj(T)(Complex!T z);
-
- Parameters:
-
Complex!T z
A complex number.
- Returns:
-
The complex conjugate of
z
.
- Examples:
-
writeln(conj(complex(1.0))); // complex(1.0) writeln(conj(complex(1.0, 2.0))); // complex(1.0, -2.0)
- Complex!T proj(T)(Complex!T z);
-
Returns the projection of
z
onto the Riemann sphere.- Parameters:
-
Complex!T z
A complex number
- Returns:
-
The projection of
z
onto the Riemann sphere.
- Examples:
-
writeln(proj(complex(1.0))); // complex(1.0) writeln(proj(complex(double.infinity, 5.0))); // complex(double.infinity, 0.0) writeln(proj(complex(5.0, -double.infinity))); // complex(double.infinity, -0.0)
- pure nothrow @nogc @safe Complex!(CommonType!(T, U)) fromPolar(T, U)(const T modulus, const U argument);
-
Constructs a complex number given its absolute value and argument.
- Parameters:
-
T modulus
The modulus U argument
The argument
- Returns:
- The complex number with the given modulus and argument.
- Examples:
-
import std.math; auto z = fromPolar(std.math.sqrt(2.0), PI_4); assert(approxEqual(z.re, 1.0L, real.epsilon)); assert(approxEqual(z.im, 1.0L, real.epsilon));
-
pure nothrow @nogc @safe Complex!T sin(T)(Complex!T z);
pure nothrow @nogc @safe Complex!T cos(T)(Complex!T z);
pure nothrow @nogc @safe Complex!T tan(T)(Complex!T z); -
Trigonometric functions on complex numbers.
- Parameters:
-
Complex!T z
A complex number.
- Returns:
-
The sine, cosine and tangent of
z
, respectively.
- Examples:
-
static import std.math; writeln(sin(complex(0.0))); // 0.0 writeln(sin(complex(2.0, 0))); // std.math.sin(2.0)
- Examples:
-
static import std.math; writeln(cos(complex(0.0))); // 1.0 writeln(cos(complex(1.3, 0.0))); // std.math.cos(1.3) writeln(cos(complex(0.0, 5.2))); // std.math.cosh(5.2)
- Examples:
-
static import std.math; assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2); assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2);
- pure nothrow @nogc @trusted Complex!real expi(real y);
-
- Parameters:
-
real y
A real number.
- Returns:
- The value of cos(y) + i sin(y).
- Note
expi
is included here for convenience and for easy migration of code.
- Examples:
-
import std.math : cos, sin; writeln(expi(0.0L)); // 1.0L writeln(expi(1.3e5L)); // complex(cos(1.3e5L), sin(1.3e5L))
- pure nothrow @nogc @safe Complex!real coshisinh(real y);
-
- Parameters:
-
real y
A real number.
- Returns:
- The value of cosh(y) + i sinh(y)
- Note
coshisinh
is included here for convenience and for easy migration of code.
- Examples:
-
import std.math : cosh, sinh; writeln(coshisinh(3.0L)); // complex(cosh(3.0L), sinh(3.0L))
- pure nothrow @nogc @safe Complex!T sqrt(T)(Complex!T z);
-
- Parameters:
-
Complex!T z
A complex number.
- Returns:
-
The square root of
z
.
- Examples:
-
static import std.math; writeln(sqrt(complex(0.0))); // 0.0 writeln(sqrt(complex(1.0L, 0))); // std.math.sqrt(1.0L) writeln(sqrt(complex(-1.0L, 0))); // complex(0, 1.0L) writeln(sqrt(complex(-8.0, -6.0))); // complex(1.0, -3.0)
- pure nothrow @nogc @trusted Complex!T exp(T)(Complex!T x);
-
Calculates ex.
- Parameters:
-
Complex!T x
A complex number
- Returns:
-
The complex base e exponential of
x
Special Values x exp(x) (±0, +0) (1, +0) (any, +∞) (NAN, NAN) (any, NAN) (NAN, NAN) (+∞, +0) (+∞, +0) (-∞, any) (±0, cis(x.im)) (+∞, any) (±∞, cis(x.im)) (-∞, +∞) (±0, ±0) (+∞, +∞) (±∞, NAN) (-∞, NAN) (±0, ±0) (+∞, NAN) (±∞, NAN) (NAN, +0) (NAN, +0) (NAN, any) (NAN, NAN) (NAN, NAN) (NAN, NAN)
- Examples:
-
import std.math : isClose, PI; writeln(exp(complex(0.0, 0.0))); // complex(1.0, 0.0) auto a = complex(2.0, 1.0); writeln(exp(conj(a))); // conj(exp(a)) auto b = exp(complex(0.0L, 1.0L) * PI); assert(isClose(b, -1.0L, 0.0, 1e-15));
- pure nothrow @nogc @safe Complex!T log(T)(Complex!T x);
-
Calculate the natural logarithm of x. The branch cut is along the negative axis.
- Parameters:
-
Complex!T x
A complex number
- Returns:
-
The complex natural logarithm of
x
Special Values x log(x) (-0, +0) (-∞, π) (+0, +0) (-∞, +0) (any, +∞) (+∞, π/2) (any, NAN) (NAN, NAN) (-∞, any) (+∞, π) (+∞, any) (+∞, +0) (-∞, +∞) (+∞, 3π/4) (+∞, +∞) (+∞, π/4) (±∞, NAN) (+∞, NAN) (NAN, any) (NAN, NAN) (NAN, +∞) (+∞, NAN) (NAN, NAN) (NAN, NAN)
- Examples:
-
import std.math : sqrt, PI, isClose; auto a = complex(2.0, 1.0); writeln(log(conj(a))); // conj(log(a)) auto b = 2.0 * log10(complex(0.0, 1.0)); auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)); assert(isClose(b, c, 0.0, 1e-15)); writeln(log(complex(-1.0L, 0.0L))); // complex(0.0L, PI) writeln(log(complex(-1.0L, -0.0L))); // complex(0.0L, -PI)
- pure nothrow @nogc @safe Complex!T log10(T)(Complex!T x);
-
Calculate the base-10 logarithm of x.
- Parameters:
-
Complex!T x
A complex number
- Returns:
-
The complex base 10 logarithm of
x
- Examples:
-
import std.math : LN10, PI, isClose, sqrt; auto a = complex(2.0, 1.0); writeln(log10(a)); // log(a) / log(complex(10.0)) auto b = log10(complex(0.0, 1.0)) * 2.0; auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0; assert(isClose(b, c, 0.0, 1e-15)); assert(ceqrel(log10(complex(-100.0L, 0.0L)), complex(2.0L, PI / LN10)) >= real.mant_dig - 1); assert(ceqrel(log10(complex(-100.0L, -0.0L)), complex(2.0L, -PI / LN10)) >= real.mant_dig - 1);
-
pure nothrow @nogc @safe Complex!T pow(T, Int)(Complex!T x, const Int n)
Constraints: if (isIntegral!Int);
pure nothrow @nogc @trusted Complex!T pow(T)(Complex!T x, const T n);
pure nothrow @nogc @trusted Complex!T pow(T)(Complex!T x, Complex!T y);
pure nothrow @nogc @trusted Complex!T pow(T)(const T x, Complex!T n); -
Calculates xn. The branch cut is on the negative axis.
- Parameters:
-
Complex!T x
base Int n
exponent
- Returns:
x
raised to the power ofn
- Examples:
-
import std.math : isClose; auto a = complex(1.0, 2.0); writeln(pow(a, 2)); // a * a writeln(pow(a, 3)); // a * a * a writeln(pow(a, -2)); // 1.0 / (a * a) assert(isClose(pow(a, -3), 1.0 / (a * a * a))); auto b = complex(2.0); assert(ceqrel(pow(b, 3), exp(3 * log(b))) >= double.mant_dig - 1);
- Examples:
-
import std.math : isClose; writeln(pow(complex(0.0), 2.0)); // complex(0.0) writeln(pow(complex(5.0), 2.0)); // complex(25.0) auto a = pow(complex(-1.0, 0.0), 0.5); assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16)); auto b = pow(complex(-1.0, -0.0), 0.5); assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16));
- Examples:
-
import std.math : isClose, exp, PI; auto a = complex(0.0); auto b = complex(2.0); writeln(pow(a, b)); // complex(0.0) auto c = complex(0.0L, 1.0L); assert(isClose(pow(c, c), exp((-PI) / 2)));
- Examples:
-
import std.math : isClose; writeln(pow(2.0, complex(0.0))); // complex(1.0) writeln(pow(2.0, complex(5.0))); // complex(32.0) auto a = pow(-2.0, complex(-1.0)); assert(isClose(a, complex(-0.5), 0.0, 1e-16)); auto b = pow(-0.5, complex(-1.0)); assert(isClose(b, complex(-2.0), 0.0, 1e-15));
© 1999–2021 The D Language Foundation
Licensed under the Boost License 1.0.
https://dlang.org/phobos/std_complex.html