On this page
PostgreSQL specific aggregation functions
These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
General-purpose aggregation functions
ArrayAgg
class ArrayAgg(expression, **extra)
[source]-
Returns a list of values, including nulls, concatenated into an array.
BitAnd
class BitAnd(expression, **extra)
[source]-
Returns an
int
of the bitwiseAND
of all non-null input values, orNone
if all values are null.
BitOr
class BitOr(expression, **extra)
[source]-
Returns an
int
of the bitwiseOR
of all non-null input values, orNone
if all values are null.
BoolAnd
class BoolAnd(expression, **extra)
[source]-
Returns
True
, if all input values are true,None
if all values are null or if there are no values, otherwiseFalse
.
BoolOr
class BoolOr(expression, **extra)
[source]-
Returns
True
if at least one input value is true,None
if all values are null or if there are no values, otherwiseFalse
.
StringAgg
class StringAgg(expression, delimiter)
[source]-
Returns the input values concatenated into a string, separated by the
delimiter
string.delimiter
-
Required argument. Needs to be a string.
Aggregate functions for statistics
y
and x
The arguments y
and x
for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Corr
class Corr(y, x)
[source]-
Returns the correlation coefficient as a
float
, orNone
if there aren’t any matching rows.
CovarPop
class CovarPop(y, x, sample=False)
[source]-
Returns the population covariance as a
float
, orNone
if there aren’t any matching rows.Has one optional argument:
sample
-
By default
CovarPop
returns the general population covariance. However, ifsample=True
, the return value will be the sample population covariance.
RegrAvgX
class RegrAvgX(y, x)
[source]-
Returns the average of the independent variable (
sum(x)/N
) as afloat
, orNone
if there aren’t any matching rows.
RegrAvgY
class RegrAvgY(y, x)
[source]-
Returns the average of the dependent variable (
sum(y)/N
) as afloat
, orNone
if there aren’t any matching rows.
RegrCount
class RegrCount(y, x)
[source]-
Returns an
int
of the number of input rows in which both expressions are not null.
RegrIntercept
class RegrIntercept(y, x)
[source]-
Returns the y-intercept of the least-squares-fit linear equation determined by the
(x, y)
pairs as afloat
, orNone
if there aren’t any matching rows.
RegrR2
class RegrR2(y, x)
[source]-
Returns the square of the correlation coefficient as a
float
, orNone
if there aren’t any matching rows.
RegrSlope
class RegrSlope(y, x)
[source]-
Returns the slope of the least-squares-fit linear equation determined by the
(x, y)
pairs as afloat
, orNone
if there aren’t any matching rows.
RegrSXX
class RegrSXX(y, x)
[source]-
Returns
sum(x^2) - sum(x)^2/N
(“sum of squares” of the independent variable) as afloat
, orNone
if there aren’t any matching rows.
RegrSXY
class RegrSXY(y, x)
[source]-
Returns
sum(x*y) - sum(x) * sum(y)/N
(“sum of products” of independent times dependent variable) as afloat
, orNone
if there aren’t any matching rows.
RegrSYY
class RegrSYY(y, x)
[source]-
Returns
sum(y^2) - sum(y)^2/N
(“sum of squares” of the dependent variable) as afloat
, orNone
if there aren’t any matching rows.
Usage examples
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
© Django Software Foundation and individual contributors
Licensed under the BSD License.
https://docs.djangoproject.com/en/1.9/ref/contrib/postgres/aggregates/