On this page
matplotlib.pyplot.xcorr
matplotlib.pyplot.xcorr(x, y, normed=True, detrend=<function detrend_none>, usevlines=True, maxlags=10, hold=None, data=None, **kwargs)[source]-
Plot the cross correlation between x and y.
The correlation with lag k is defined as sum_n x[n+k] * conj(y[n]).
Parameters: -
x : sequence of scalars of length n -
y : sequence of scalars of length n -
hold : bool, optional, deprecated, default: True -
detrend : callable, optional, default: mlab.detrend_none -
x is detrended by the detrend callable. Default is no normalization.
-
normed : bool, optional, default: True -
If
True, input vectors are normalised to unit length. -
usevlines : bool, optional, default: True -
If
True,Axes.vlinesis used to plot the vertical lines from the origin to the acorr. Otherwise,Axes.plotis used. -
maxlags : int, optional -
Number of lags to show. If None, will return all
2 * len(x) - 1lags. Default is 10.
Returns: -
lags : array (lenth 2*maxlags+1) -
lag vector.
-
c : array (length 2*maxlags+1) -
auto correlation vector.
-
line : LineCollection or Line2D -
Artistadded to the axes of the correlationLineCollectionif usevlines is TrueLine2Dif usevlines is False -
b : Line2D or None -
Horizontal line at 0 if usevlines is True None usevlines is False
Other Parameters: -
linestyle : Line2D property, optional -
Only used if usevlines is
False. -
marker : string, optional -
Default is 'o'.
Notes
The cross correlation is performed with
numpy.correlate()withmode = 2.Note
In addition to the above described arguments, this function can take a data keyword argument. If such a data argument is given, the following arguments are replaced by data[<arg>]:
- All arguments with the following names: 'x', 'y'.
-
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/2.2.3/api/_as_gen/matplotlib.pyplot.xcorr.html