On this page
numpy.full_like
numpy.full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None)[source]-
Return a full array with the same shape and type as a given array.
- Parameters
-
aarray_like-
The shape and data-type of
adefine these same attributes of the returned array. fill_valuescalar-
Fill value.
dtypedata-type, optional-
Overrides the data type of the result.
order{‘C’, ‘F’, ‘A’, or ‘K’}, optional-
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if
ais Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout ofaas closely as possible. subokbool, optional.-
If True, then the newly created array will use the sub-class type of
a, otherwise it will be a base-class array. Defaults to True. shapeint or sequence of ints, optional.-
Overrides the shape of the result. If order=’K’ and the number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.
New in version 1.17.0.
- Returns
-
outndarray-
Array of
fill_valuewith the same shape and type asa.
See also
empty_like-
Return an empty array with shape and type of input.
ones_like-
Return an array of ones with shape and type of input.
zeros_like-
Return an array of zeros with shape and type of input.
full-
Return a new array of given shape filled with value.
Examples
>>> x = np.arange(6, dtype=int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1]) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0]) >>> np.full_like(x, 0.1, dtype=np.double) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) >>> np.full_like(x, np.nan, dtype=np.double) array([nan, nan, nan, nan, nan, nan])>>> y = np.arange(6, dtype=np.double) >>> np.full_like(y, 0.1) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.20/reference/generated/numpy.full_like.html