On this page
numpy.ma.array
ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)[source]-
An array class with possibly masked values.
Masked values of True exclude the corresponding element from any computation.
Construction:
x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, shrink=True, order=None)- Parameters
-
dataarray_like-
Input data.
masksequence, optional-
Mask. Must be convertible to an array of booleans with the same shape as
data. True indicates a masked (i.e. invalid) data. dtypedtype, optional-
Data type of the output. If
dtypeis None, the type of the data argument (data.dtype) is used. Ifdtypeis not None and different fromdata.dtype, a copy is performed. copybool, optional-
Whether to copy the input data (True), or to use a reference instead. Default is False.
subokbool, optional-
Whether to return a subclass of
MaskedArrayif possible (True) or a plainMaskedArray. Default is True. ndminint, optional-
Minimum number of dimensions. Default is 0.
fill_valuescalar, optional-
Value used to fill in the masked values when necessary. If None, a default based on the data-type is used.
keep_maskbool, optional-
Whether to combine
maskwith the mask of the input data, if any (True), or to use onlymaskfor the output (False). Default is True. hard_maskbool, optional-
Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False.
shrinkbool, optional-
Whether to force compression of an empty mask. Default is True.
order{‘C’, ‘F’, ‘A’}, optional-
Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous.
Examples
The
maskcan be initialized with an array of boolean values with the same shape asdata.>>> data = np.arange(6).reshape((2, 3)) >>> np.ma.MaskedArray(data, mask=[[False, True, False], ... [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999)Alternatively, the
maskcan be initialized to homogeneous boolean array with the same shape asdataby passing in a scalar boolean value:>>> np.ma.MaskedArray(data, mask=False) masked_array( data=[[0, 1, 2], [3, 4, 5]], mask=[[False, False, False], [False, False, False]], fill_value=999999)>>> np.ma.MaskedArray(data, mask=True) masked_array( data=[[--, --, --], [--, --, --]], mask=[[ True, True, True], [ True, True, True]], fill_value=999999, dtype=int64)Note
The recommended practice for initializing
maskwith a scalar boolean value is to useTrue/Falserather thannp.True_/np.False_. The reason isnomaskis represented internally asnp.False_.>>> np.False_ is np.ma.nomask True
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.20/reference/generated/numpy.ma.array.html