On this page
numpy.ma.mask_rowcols
ma.mask_rowcols(a, axis=None)[source]- 
    
Mask rows and/or columns of a 2D array that contain masked values.
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the
axisparameter.- If 
axisis None, rows and columns are masked. - If 
axisis 0, only rows are masked. - If 
axisis 1 or -1, only columns are masked. 
- Parameters
 - 
      
aarray_like, MaskedArray- 
        
The array to mask. If not a MaskedArray instance (or if no array elements are masked). The result is a MaskedArray with
maskset tonomask(False). Must be a 2D array. axisint, optional- 
        
Axis along which to perform the operation. If None, applies to a flattened version of the array.
 
 - Returns
 - 
      
aMaskedArray- 
        
A modified version of the input array, masked depending on the value of the
axisparameter. 
 - Raises
 - 
      
- NotImplementedError
 - 
        
If input array
ais not 2D. 
 
See also
mask_rows- 
       
Mask rows of a 2D array that contain masked values.
 mask_cols- 
       
Mask cols of a 2D array that contain masked values.
 masked_where- 
       
Mask where a condition is met.
 
Notes
The input array’s mask is modified by this function.
Examples
>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1) - If 
 
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.20/reference/generated/numpy.ma.mask_rowcols.html