On this page
numpy.random.Generator.poisson
method
random.Generator.poisson(lam=1.0, size=None)- 
    
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.
- Parameters
 - 
      
lamfloat or array_like of floats- 
        
Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size.
 sizeint or tuple of ints, optional- 
        
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. If size isNone(default), a single value is returned iflamis a scalar. Otherwise,np.array(lam).sizesamples are drawn. 
 - Returns
 - 
      
outndarray or scalar- 
        
Drawn samples from the parameterized Poisson distribution.
 
 
Notes
The Poisson distribution
For events with an expected separation
the Poisson distribution
describes the probability of
events occurring within the observed interval
.
Because the output is limited to the range of the C int64 type, a ValueError is raised when
lamis within 10 sigma of the maximum representable value.References
1- 
      
Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
 2- 
      
Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution
 
Examples
Draw samples from the distribution:
>>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000)Display histogram of the sample:
>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show()Draw each 100 values for lambda 100 and 500:
>>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) 
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.20/reference/random/generated/numpy.random.Generator.poisson.html