On this page
numpy.random.standard_normal
random.standard_normal(size=None)- 
    
Draw samples from a standard Normal distribution (mean=0, stdev=1).
Note
New code should use the
standard_normalmethod of adefault_rng()instance instead; please see the Quick Start.- Parameters
 - 
      
sizeint or tuple of ints, optional- 
        
Output shape. If the given shape is, e.g.,
(m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned. 
 - Returns
 - 
      
outfloat or ndarray- 
        
A floating-point array of shape
sizeof drawn samples, or a single sample ifsizewas not specified. 
 
See also
normal- 
       
Equivalent function with additional
locandscalearguments for setting the mean and standard deviation. Generator.standard_normal- 
       
which should be used for new code.
 
Notes
For random samples from
, use one of:
mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...)Examples
>>> np.random.standard_normal() 2.1923875335537315 #random>>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2)Two-by-four array of samples from
:
>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random 
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
 https://numpy.org/doc/1.20/reference/random/generated/numpy.random.standard_normal.html