On this page
unittest.mock — mock object library
New in version 3.3.
Source code: Lib/unittest/mock.py
unittest.mock
is a library for testing in Python. It allows you to replace parts of your system under test with mock objects and make assertions about how they have been used.
unittest.mock
provides a core Mock
class removing the need to create a host of stubs throughout your test suite. After performing an action, you can make assertions about which methods / attributes were used and arguments they were called with. You can also specify return values and set needed attributes in the normal way.
Additionally, mock provides a patch()
decorator that handles patching module and class level attributes within the scope of a test, along with sentinel
for creating unique objects. See the quick guide for some examples of how to use Mock
, MagicMock
and patch()
.
Mock is very easy to use and is designed for use with unittest
. Mock is based on the ‘action -> assertion’ pattern instead of ‘record -> replay’ used by many mocking frameworks.
There is a backport of unittest.mock
for earlier versions of Python, available as mock on PyPI .
Quick Guide
Mock
and MagicMock
objects create all attributes and methods as you access them and store details of how they have been used. You can configure them, to specify return values or limit what attributes are available, and then make assertions about how they have been used:
>>> from unittest.mock import MagicMock
>>> thing = ProductionClass()
>>> thing.method = MagicMock(return_value=3)
>>> thing.method(3, 4, 5, key='value')
3
>>> thing.method.assert_called_with(3, 4, 5, key='value')
side_effect
allows you to perform side effects, including raising an exception when a mock is called:
>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'
>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(1, 2, 3)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)
Mock has many other ways you can configure it and control its behaviour. For example the spec argument configures the mock to take its specification from another object. Attempting to access attributes or methods on the mock that don’t exist on the spec will fail with an AttributeError
.
The patch()
decorator / context manager makes it easy to mock classes or objects in a module under test. The object you specify will be replaced with a mock (or other object) during the test and restored when the test ends:
>>> from unittest.mock import patch
>>> @patch('module.ClassName2')
... @patch('module.ClassName1')
... def test(MockClass1, MockClass2):
... module.ClassName1()
... module.ClassName2()
... assert MockClass1 is module.ClassName1
... assert MockClass2 is module.ClassName2
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()
Note
When you nest patch decorators the mocks are passed in to the decorated function in the same order they applied (the normal Python order that decorators are applied). This means from the bottom up, so in the example above the mock for module.ClassName1
is passed in first.
With patch()
it matters that you patch objects in the namespace where they are looked up. This is normally straightforward, but for a quick guide read where to patch.
As well as a decorator patch()
can be used as a context manager in a with statement:
>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:
... thing = ProductionClass()
... thing.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)
There is also patch.dict()
for setting values in a dictionary just during a scope and restoring the dictionary to its original state when the test ends:
>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original
Mock supports the mocking of Python magic methods. The easiest way of using magic methods is with the MagicMock
class. It allows you to do things like:
>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_with()
Mock allows you to assign functions (or other Mock instances) to magic methods and they will be called appropriately. The MagicMock
class is just a Mock variant that has all of the magic methods pre-created for you (well, all the useful ones anyway).
The following is an example of using magic methods with the ordinary Mock class:
>>> mock = Mock()
>>> mock.__str__ = Mock(return_value='wheeeeee')
>>> str(mock)
'wheeeeee'
For ensuring that the mock objects in your tests have the same api as the objects they are replacing, you can use auto-speccing. Auto-speccing can be done through the autospec argument to patch, or the create_autospec()
function. Auto-speccing creates mock objects that have the same attributes and methods as the objects they are replacing, and any functions and methods (including constructors) have the same call signature as the real object.
This ensures that your mocks will fail in the same way as your production code if they are used incorrectly:
>>> from unittest.mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)
create_autospec()
can also be used on classes, where it copies the signature of the __init__
method, and on callable objects where it copies the signature of the __call__
method.
The Mock Class
Mock
is a flexible mock object intended to replace the use of stubs and test doubles throughout your code. Mocks are callable and create attributes as new mocks when you access them 1. Accessing the same attribute will always return the same mock. Mocks record how you use them, allowing you to make assertions about what your code has done to them.
MagicMock
is a subclass of Mock
with all the magic methods pre-created and ready to use. There are also non-callable variants, useful when you are mocking out objects that aren’t callable: NonCallableMock
and NonCallableMagicMock
The patch()
decorators makes it easy to temporarily replace classes in a particular module with a Mock
object. By default patch()
will create a MagicMock
for you. You can specify an alternative class of Mock
using the new_callable argument to patch()
.
- class
unittest.mock.
Mock
( spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs ) -
Create a new
Mock
object.Mock
takes several optional arguments that specify the behaviour of the Mock object:spec: This can be either a list of strings or an existing object (a class or instance) that acts as the specification for the mock object. If you pass in an object then a list of strings is formed by calling dir on the object (excluding unsupported magic attributes and methods). Accessing any attribute not in this list will raise an
AttributeError
.If spec is an object (rather than a list of strings) then
__class__
returns the class of the spec object. This allows mocks to passisinstance()
tests.spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock that isn’t on the object passed as spec_set will raise an
AttributeError
.side_effect: A function to be called whenever the Mock is called. See the
side_effect
attribute. Useful for raising exceptions or dynamically changing return values. The function is called with the same arguments as the mock, and unless it returnsDEFAULT
, the return value of this function is used as the return value.Alternatively side_effect can be an exception class or instance. In this case the exception will be raised when the mock is called.
If side_effect is an iterable then each call to the mock will return the next value from the iterable.
A side_effect can be cleared by setting it to
None
.return_value: The value returned when the mock is called. By default this is a new Mock (created on first access). See the
return_value
attribute.unsafe: By default if any attribute starts with assert or assret will raise an
AttributeError
. Passingunsafe=True
will allow access to these attributes.New in version 3.5.
wraps: Item for the mock object to wrap. If wraps is not
None
then calling the Mock will pass the call through to the wrapped object (returning the real result). Attribute access on the mock will return a Mock object that wraps the corresponding attribute of the wrapped object (so attempting to access an attribute that doesn’t exist will raise anAttributeError
).If the mock has an explicit return_value set then calls are not passed to the wrapped object and the return_value is returned instead.
name: If the mock has a name then it will be used in the repr of the mock. This can be useful for debugging. The name is propagated to child mocks.
Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock after it is created. See the
configure_mock()
method for details.assert_called
( )-
Assert that the mock was called at least once.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called()
New in version 3.6.
assert_called_once
( )-
Assert that the mock was called exactly once.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() Traceback (most recent call last): ... AssertionError: Expected 'method' to have been called once. Called 2 times.
New in version 3.6.
assert_called_with
( *args, **kwargs )-
This method is a convenient way of asserting that the last call has been made in a particular way:
>>> mock = Mock() >>> mock.method(1, 2, 3, test='wow') <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_with(1, 2, 3, test='wow')
assert_called_once_with
( *args, **kwargs )-
Assert that the mock was called exactly once and that that call was with the specified arguments.
>>> mock = Mock(return_value=None) >>> mock('foo', bar='baz') >>> mock.assert_called_once_with('foo', bar='baz') >>> mock('other', bar='values') >>> mock.assert_called_once_with('other', bar='values') Traceback (most recent call last): ... AssertionError: Expected 'mock' to be called once. Called 2 times.
assert_any_call
( *args, **kwargs )-
assert the mock has been called with the specified arguments.
The assert passes if the mock has ever been called, unlike
assert_called_with()
andassert_called_once_with()
that only pass if the call is the most recent one, and in the case ofassert_called_once_with()
it must also be the only call.>>> mock = Mock(return_value=None) >>> mock(1, 2, arg='thing') >>> mock('some', 'thing', 'else') >>> mock.assert_any_call(1, 2, arg='thing')
assert_has_calls
( calls, any_order=False )-
assert the mock has been called with the specified calls. The
mock_calls
list is checked for the calls.If any_order is false then the calls must be sequential. There can be extra calls before or after the specified calls.
If any_order is true then the calls can be in any order, but they must all appear in
mock_calls
.>>> mock = Mock(return_value=None) >>> mock(1) >>> mock(2) >>> mock(3) >>> mock(4) >>> calls = [call(2), call(3)] >>> mock.assert_has_calls(calls) >>> calls = [call(4), call(2), call(3)] >>> mock.assert_has_calls(calls, any_order=True)
assert_not_called
( )-
Assert the mock was never called.
>>> m = Mock() >>> m.hello.assert_not_called() >>> obj = m.hello() >>> m.hello.assert_not_called() Traceback (most recent call last): ... AssertionError: Expected 'hello' to not have been called. Called 1 times.
New in version 3.5.
reset_mock
( *, return_value=False, side_effect=False )-
The reset_mock method resets all the call attributes on a mock object:
>>> mock = Mock(return_value=None) >>> mock('hello') >>> mock.called True >>> mock.reset_mock() >>> mock.called False
Changed in version 3.6: Added two keyword only argument to the reset_mock function.
This can be useful where you want to make a series of assertions that reuse the same object. Note that
reset_mock()
doesn’t clear the return value,side_effect
or any child attributes you have set using normal assignment by default. In case you want to reset return_value orside_effect
, then pass the corresponding parameter asTrue
. Child mocks and the return value mock (if any) are reset as well.Note
return_value, and
side_effect
are keyword only argument.
mock_add_spec
( spec, spec_set=False )-
Add a spec to a mock. spec can either be an object or a list of strings. Only attributes on the spec can be fetched as attributes from the mock.
If spec_set is true then only attributes on the spec can be set.
attach_mock
( mock, attribute )-
Attach a mock as an attribute of this one, replacing its name and parent. Calls to the attached mock will be recorded in the
method_calls
andmock_calls
attributes of this one.
configure_mock
( **kwargs )-
Set attributes on the mock through keyword arguments.
Attributes plus return values and side effects can be set on child mocks using standard dot notation and unpacking a dictionary in the method call:
>>> mock = Mock() >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock.configure_mock(**attrs) >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
The same thing can be achieved in the constructor call to mocks:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock = Mock(some_attribute='eggs', **attrs) >>> mock.some_attribute 'eggs' >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
configure_mock()
exists to make it easier to do configuration after the mock has been created.
__dir__
( )-
Mock
objects limit the results ofdir(some_mock)
to useful results. For mocks with a spec this includes all the permitted attributes for the mock.See
FILTER_DIR
for what this filtering does, and how to switch it off.
_get_child_mock
( **kw )-
Create the child mocks for attributes and return value. By default child mocks will be the same type as the parent. Subclasses of Mock may want to override this to customize the way child mocks are made.
For non-callable mocks the callable variant will be used (rather than any custom subclass).
called
-
A boolean representing whether or not the mock object has been called:
>>> mock = Mock(return_value=None) >>> mock.called False >>> mock() >>> mock.called True
call_count
-
An integer telling you how many times the mock object has been called:
>>> mock = Mock(return_value=None) >>> mock.call_count 0 >>> mock() >>> mock() >>> mock.call_count 2
return_value
-
Set this to configure the value returned by calling the mock:
>>> mock = Mock() >>> mock.return_value = 'fish' >>> mock() 'fish'
The default return value is a mock object and you can configure it in the normal way:
>>> mock = Mock() >>> mock.return_value.attribute = sentinel.Attribute >>> mock.return_value() <Mock name='mock()()' id='...'> >>> mock.return_value.assert_called_with()
return_value
can also be set in the constructor:>>> mock = Mock(return_value=3) >>> mock.return_value 3 >>> mock() 3
side_effect
-
This can either be a function to be called when the mock is called, an iterable or an exception (class or instance) to be raised.
If you pass in a function it will be called with same arguments as the mock and unless the function returns the
DEFAULT
singleton the call to the mock will then return whatever the function returns. If the function returnsDEFAULT
then the mock will return its normal value (from thereturn_value
).If you pass in an iterable, it is used to retrieve an iterator which must yield a value on every call. This value can either be an exception instance to be raised, or a value to be returned from the call to the mock (
DEFAULT
handling is identical to the function case).An example of a mock that raises an exception (to test exception handling of an API):
>>> mock = Mock() >>> mock.side_effect = Exception('Boom!') >>> mock() Traceback (most recent call last): ... Exception: Boom!
Using
side_effect
to return a sequence of values:>>> mock = Mock() >>> mock.side_effect = [3, 2, 1] >>> mock(), mock(), mock() (3, 2, 1)
Using a callable:
>>> mock = Mock(return_value=3) >>> def side_effect(*args, **kwargs): ... return DEFAULT ... >>> mock.side_effect = side_effect >>> mock() 3
side_effect
can be set in the constructor. Here’s an example that adds one to the value the mock is called with and returns it:>>> side_effect = lambda value: value + 1 >>> mock = Mock(side_effect=side_effect) >>> mock(3) 4 >>> mock(-8) -7
Setting
side_effect
toNone
clears it:>>> m = Mock(side_effect=KeyError, return_value=3) >>> m() Traceback (most recent call last): ... KeyError >>> m.side_effect = None >>> m() 3
call_args
-
This is either
None
(if the mock hasn’t been called), or the arguments that the mock was last called with. This will be in the form of a tuple: the first member, which can also be accessed through theargs
property, is any ordered arguments the mock was called with (or an empty tuple) and the second member, which can also be accessed through thekwargs
property, is any keyword arguments (or an empty dictionary).>>> mock = Mock(return_value=None) >>> print(mock.call_args) None >>> mock() >>> mock.call_args call() >>> mock.call_args == () True >>> mock(3, 4) >>> mock.call_args call(3, 4) >>> mock.call_args == ((3, 4),) True >>> mock.call_args.args (3, 4) >>> mock.call_args.kwargs {} >>> mock(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args call(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args.args (3, 4, 5) >>> mock.call_args.kwargs {'key': 'fish', 'next': 'w00t!'}
call_args
, along with members of the listscall_args_list
,method_calls
andmock_calls
arecall
objects. These are tuples, so they can be unpacked to get at the individual arguments and make more complex assertions. See calls as tuples.Changed in version 3.8: Added
args
andkwargs
properties.
call_args_list
-
This is a list of all the calls made to the mock object in sequence (so the length of the list is the number of times it has been called). Before any calls have been made it is an empty list. The
call
object can be used for conveniently constructing lists of calls to compare withcall_args_list
.>>> mock = Mock(return_value=None) >>> mock() >>> mock(3, 4) >>> mock(key='fish', next='w00t!') >>> mock.call_args_list [call(), call(3, 4), call(key='fish', next='w00t!')] >>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)] >>> mock.call_args_list == expected True
Members of
call_args_list
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
method_calls
-
As well as tracking calls to themselves, mocks also track calls to methods and attributes, and their methods and attributes:
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.property.method.attribute() <Mock name='mock.property.method.attribute()' id='...'> >>> mock.method_calls [call.method(), call.property.method.attribute()]
Members of
method_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
mock_calls
-
mock_calls
records all calls to the mock object, its methods, magic methods and return value mocks.>>> mock = MagicMock() >>> result = mock(1, 2, 3) >>> mock.first(a=3) <MagicMock name='mock.first()' id='...'> >>> mock.second() <MagicMock name='mock.second()' id='...'> >>> int(mock) 1 >>> result(1) <MagicMock name='mock()()' id='...'> >>> expected = [call(1, 2, 3), call.first(a=3), call.second(), ... call.__int__(), call()(1)] >>> mock.mock_calls == expected True
Members of
mock_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.Note
The way
mock_calls
are recorded means that where nested calls are made, the parameters of ancestor calls are not recorded and so will always compare equal:>>> mock = MagicMock() >>> mock.top(a=3).bottom() <MagicMock name='mock.top().bottom()' id='...'> >>> mock.mock_calls [call.top(a=3), call.top().bottom()] >>> mock.mock_calls[-1] == call.top(a=-1).bottom() True
__class__
-
Normally the
__class__
attribute of an object will return its type. For a mock object with aspec
,__class__
returns the spec class instead. This allows mock objects to passisinstance()
tests for the object they are replacing / masquerading as:>>> mock = Mock(spec=3) >>> isinstance(mock, int) True
__class__
is assignable to, this allows a mock to pass anisinstance()
check without forcing you to use a spec:>>> mock = Mock() >>> mock.__class__ = dict >>> isinstance(mock, dict) True
- class
unittest.mock.
NonCallableMock
( spec=None, wraps=None, name=None, spec_set=None, **kwargs ) -
A non-callable version of
Mock
. The constructor parameters have the same meaning ofMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
Mock objects that use a class or an instance as a spec
or spec_set
are able to pass isinstance()
tests:
>>> mock = Mock(spec=SomeClass)
>>> isinstance(mock, SomeClass)
True
>>> mock = Mock(spec_set=SomeClass())
>>> isinstance(mock, SomeClass)
True
The Mock
classes have support for mocking magic methods. See magic methods for the full details.
The mock classes and the patch()
decorators all take arbitrary keyword arguments for configuration. For the patch()
decorators the keywords are passed to the constructor of the mock being created. The keyword arguments are for configuring attributes of the mock:
>>> m = MagicMock(attribute=3, other='fish')
>>> m.attribute
3
>>> m.other
'fish'
The return value and side effect of child mocks can be set in the same way, using dotted notation. As you can’t use dotted names directly in a call you have to create a dictionary and unpack it using **
:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...
KeyError
A callable mock which was created with a spec (or a spec_set) will introspect the specification object’s signature when matching calls to the mock. Therefore, it can match the actual call’s arguments regardless of whether they were passed positionally or by name:
>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, c=3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(1, 2, 3)
>>> mock.assert_called_with(a=1, b=2, c=3)
This applies to assert_called_with()
, assert_called_once_with()
, assert_has_calls()
and assert_any_call()
. When Autospeccing, it will also apply to method calls on the mock object.
Changed in version 3.4: Added signature introspection on specced and autospecced mock objects.
- class
unittest.mock.
PropertyMock
( *args, **kwargs ) -
A mock intended to be used as a property, or other descriptor, on a class.
PropertyMock
provides__get__()
and__set__()
methods so you can specify a return value when it is fetched.Fetching a
PropertyMock
instance from an object calls the mock, with no args. Setting it calls the mock with the value being set.>>> class Foo: ... @property ... def foo(self): ... return 'something' ... @foo.setter ... def foo(self, value): ... pass ... >>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo: ... mock_foo.return_value = 'mockity-mock' ... this_foo = Foo() ... print(this_foo.foo) ... this_foo.foo = 6 ... mockity-mock >>> mock_foo.mock_calls [call(), call(6)]
Because of the way mock attributes are stored you can’t directly attach a PropertyMock
to a mock object. Instead you can attach it to the mock type object:
>>> m = MagicMock()
>>> p = PropertyMock(return_value=3)
>>> type(m).foo = p
>>> m.foo
3
>>> p.assert_called_once_with()
- class
unittest.mock.
AsyncMock
( spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs ) -
An asynchronous version of
Mock
. TheAsyncMock
object will behave so the object is recognized as an async function, and the result of a call is an awaitable.>>> mock = AsyncMock() >>> asyncio.iscoroutinefunction(mock) True >>> inspect.isawaitable(mock()) True
The result of
mock()
is an async function which will have the outcome ofside_effect
orreturn_value
after it has been awaited:if
side_effect
is a function, the async function will return the result of that function,if
side_effect
is an exception, the async function will raise the exception,if
side_effect
is an iterable, the async function will return the next value of the iterable, however, if the sequence of result is exhausted,StopAsyncIteration
is raised immediately,if
side_effect
is not defined, the async function will return the value defined byreturn_value
, hence, by default, the async function returns a newAsyncMock
object.
Setting the spec of a
Mock
orMagicMock
to an async function will result in a coroutine object being returned after calling.>>> async def async_func(): pass ... >>> mock = MagicMock(async_func) >>> mock <MagicMock spec='function' id='...'> >>> mock() <coroutine object AsyncMockMixin._mock_call at ...>
Setting the spec of a
Mock
,MagicMock
, orAsyncMock
to a class with asynchronous and synchronous functions will automatically detect the synchronous functions and set them asMagicMock
(if the parent mock isAsyncMock
orMagicMock
) orMock
(if the parent mock isMock
). All asynchronous functions will beAsyncMock
.>>> class ExampleClass: ... def sync_foo(): ... pass ... async def async_foo(): ... pass ... >>> a_mock = AsyncMock(ExampleClass) >>> a_mock.sync_foo <MagicMock name='mock.sync_foo' id='...'> >>> a_mock.async_foo <AsyncMock name='mock.async_foo' id='...'> >>> mock = Mock(ExampleClass) >>> mock.sync_foo <Mock name='mock.sync_foo' id='...'> >>> mock.async_foo <AsyncMock name='mock.async_foo' id='...'>
New in version 3.8.
assert_awaited
( )-
Assert that the mock was awaited at least once. Note that this is separate from the object having been called, the
await
keyword must be used:>>> mock = AsyncMock() >>> async def main(coroutine_mock): ... await coroutine_mock ... >>> coroutine_mock = mock() >>> mock.called True >>> mock.assert_awaited() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited. >>> asyncio.run(main(coroutine_mock)) >>> mock.assert_awaited()
assert_awaited_once
( )-
Assert that the mock was awaited exactly once.
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.assert_awaited_once() >>> asyncio.run(main()) >>> mock.method.assert_awaited_once() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
assert_awaited_with
( *args, **kwargs )-
Assert that the last await was with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_with('foo', bar='bar') >>> mock.assert_awaited_with('other') Traceback (most recent call last): ... AssertionError: expected call not found. Expected: mock('other') Actual: mock('foo', bar='bar')
assert_awaited_once_with
( *args, **kwargs )-
Assert that the mock was awaited exactly once and with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
assert_any_await
( *args, **kwargs )-
Assert the mock has ever been awaited with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> asyncio.run(main('hello')) >>> mock.assert_any_await('foo', bar='bar') >>> mock.assert_any_await('other') Traceback (most recent call last): ... AssertionError: mock('other') await not found
assert_has_awaits
( calls, any_order=False )-
Assert the mock has been awaited with the specified calls. The
await_args_list
list is checked for the awaits.If any_order is false then the awaits must be sequential. There can be extra calls before or after the specified awaits.
If any_order is true then the awaits can be in any order, but they must all appear in
await_args_list
.>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> calls = [call("foo"), call("bar")] >>> mock.assert_has_awaits(calls) Traceback (most recent call last): ... AssertionError: Awaits not found. Expected: [call('foo'), call('bar')] Actual: [] >>> asyncio.run(main('foo')) >>> asyncio.run(main('bar')) >>> mock.assert_has_awaits(calls)
assert_not_awaited
( )-
Assert that the mock was never awaited.
>>> mock = AsyncMock() >>> mock.assert_not_awaited()
reset_mock
( *args, **kwargs )-
See
Mock.reset_mock()
. Also setsawait_count
to 0,await_args
to None, and clears theawait_args_list
.
await_count
-
An integer keeping track of how many times the mock object has been awaited.
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.await_count 1 >>> asyncio.run(main()) >>> mock.await_count 2
await_args
-
This is either
None
(if the mock hasn’t been awaited), or the arguments that the mock was last awaited with. Functions the same asMock.call_args
.>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args >>> asyncio.run(main('foo')) >>> mock.await_args call('foo') >>> asyncio.run(main('bar')) >>> mock.await_args call('bar')
await_args_list
-
This is a list of all the awaits made to the mock object in sequence (so the length of the list is the number of times it has been awaited). Before any awaits have been made it is an empty list.
>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args_list [] >>> asyncio.run(main('foo')) >>> mock.await_args_list [call('foo')] >>> asyncio.run(main('bar')) >>> mock.await_args_list [call('foo'), call('bar')]
Calling
Mock objects are callable. The call will return the value set as the return_value
attribute. The default return value is a new Mock object; it is created the first time the return value is accessed (either explicitly or by calling the Mock) - but it is stored and the same one returned each time.
Calls made to the object will be recorded in the attributes like call_args
and call_args_list
.
If side_effect
is set then it will be called after the call has been recorded, so if side_effect
raises an exception the call is still recorded.
The simplest way to make a mock raise an exception when called is to make side_effect
an exception class or instance:
>>> m = MagicMock(side_effect=IndexError)
>>> m(1, 2, 3)
Traceback (most recent call last):
...
IndexError
>>> m.mock_calls
[call(1, 2, 3)]
>>> m.side_effect = KeyError('Bang!')
>>> m('two', 'three', 'four')
Traceback (most recent call last):
...
KeyError: 'Bang!'
>>> m.mock_calls
[call(1, 2, 3), call('two', 'three', 'four')]
If side_effect
is a function then whatever that function returns is what calls to the mock return. The side_effect
function is called with the same arguments as the mock. This allows you to vary the return value of the call dynamically, based on the input:
>>> def side_effect(value):
... return value + 1
...
>>> m = MagicMock(side_effect=side_effect)
>>> m(1)
2
>>> m(2)
3
>>> m.mock_calls
[call(1), call(2)]
If you want the mock to still return the default return value (a new mock), or any set return value, then there are two ways of doing this. Either return mock.return_value
from inside side_effect
, or return DEFAULT
:
>>> m = MagicMock()
>>> def side_effect(*args, **kwargs):
... return m.return_value
...
>>> m.side_effect = side_effect
>>> m.return_value = 3
>>> m()
3
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> m.side_effect = side_effect
>>> m()
3
To remove a side_effect
, and return to the default behaviour, set the side_effect
to None
:
>>> m = MagicMock(return_value=6)
>>> def side_effect(*args, **kwargs):
... return 3
...
>>> m.side_effect = side_effect
>>> m()
3
>>> m.side_effect = None
>>> m()
6
The side_effect
can also be any iterable object. Repeated calls to the mock will return values from the iterable (until the iterable is exhausted and a StopIteration
is raised):
>>> m = MagicMock(side_effect=[1, 2, 3])
>>> m()
1
>>> m()
2
>>> m()
3
>>> m()
Traceback (most recent call last):
...
StopIteration
If any members of the iterable are exceptions they will be raised instead of returned:
>>> iterable = (33, ValueError, 66)
>>> m = MagicMock(side_effect=iterable)
>>> m()
33
>>> m()
Traceback (most recent call last):
...
ValueError
>>> m()
66
Deleting Attributes
Mock objects create attributes on demand. This allows them to pretend to be objects of any type.
You may want a mock object to return False
to a hasattr()
call, or raise an AttributeError
when an attribute is fetched. You can do this by providing an object as a spec
for a mock, but that isn’t always convenient.
You “block” attributes by deleting them. Once deleted, accessing an attribute will raise an AttributeError
.
>>> mock = MagicMock()
>>> hasattr(mock, 'm')
True
>>> del mock.m
>>> hasattr(mock, 'm')
False
>>> del mock.f
>>> mock.f
Traceback (most recent call last):
...
AttributeError: f
Mock names and the name attribute
Since “name” is an argument to the Mock
constructor, if you want your mock object to have a “name” attribute you can’t just pass it in at creation time. There are two alternatives. One option is to use configure_mock()
:
>>> mock = MagicMock()
>>> mock.configure_mock(name='my_name')
>>> mock.name
'my_name'
A simpler option is to simply set the “name” attribute after mock creation:
>>> mock = MagicMock()
>>> mock.name = "foo"
Attaching Mocks as Attributes
When you attach a mock as an attribute of another mock (or as the return value) it becomes a “child” of that mock. Calls to the child are recorded in the method_calls
and mock_calls
attributes of the parent. This is useful for configuring child mocks and then attaching them to the parent, or for attaching mocks to a parent that records all calls to the children and allows you to make assertions about the order of calls between mocks:
>>> parent = MagicMock()
>>> child1 = MagicMock(return_value=None)
>>> child2 = MagicMock(return_value=None)
>>> parent.child1 = child1
>>> parent.child2 = child2
>>> child1(1)
>>> child2(2)
>>> parent.mock_calls
[call.child1(1), call.child2(2)]
The exception to this is if the mock has a name. This allows you to prevent the “parenting” if for some reason you don’t want it to happen.
>>> mock = MagicMock()
>>> not_a_child = MagicMock(name='not-a-child')
>>> mock.attribute = not_a_child
>>> mock.attribute()
<MagicMock name='not-a-child()' id='...'>
>>> mock.mock_calls
[]
Mocks created for you by patch()
are automatically given names. To attach mocks that have names to a parent you use the attach_mock()
method:
>>> thing1 = object()
>>> thing2 = object()
>>> parent = MagicMock()
>>> with patch('__main__.thing1', return_value=None) as child1:
... with patch('__main__.thing2', return_value=None) as child2:
... parent.attach_mock(child1, 'child1')
... parent.attach_mock(child2, 'child2')
... child1('one')
... child2('two')
...
>>> parent.mock_calls
[call.child1('one'), call.child2('two')]
- 1
-
The only exceptions are magic methods and attributes (those that have leading and trailing double underscores). Mock doesn’t create these but instead raises an
AttributeError
. This is because the interpreter will often implicitly request these methods, and gets very confused to get a new Mock object when it expects a magic method. If you need magic method support see magic methods.
The patchers
The patch decorators are used for patching objects only within the scope of the function they decorate. They automatically handle the unpatching for you, even if exceptions are raised. All of these functions can also be used in with statements or as class decorators.
patch
Note
patch()
is straightforward to use. The key is to do the patching in the right namespace. See the section where to patch.
unittest.mock.
patch
( target, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs )-
patch()
acts as a function decorator, class decorator or a context manager. Inside the body of the function or with statement, the target is patched with a new object. When the function/with statement exits the patch is undone.If new is omitted, then the target is replaced with an
AsyncMock
if the patched object is an async function or aMagicMock
otherwise. Ifpatch()
is used as a decorator and new is omitted, the created mock is passed in as an extra argument to the decorated function. Ifpatch()
is used as a context manager the created mock is returned by the context manager.target should be a string in the form
'package.module.ClassName'
. The target is imported and the specified object replaced with the new object, so the target must be importable from the environment you are callingpatch()
from. The target is imported when the decorated function is executed, not at decoration time.The spec and spec_set keyword arguments are passed to the
MagicMock
if patch is creating one for you.In addition you can pass
spec=True
orspec_set=True
, which causes patch to pass in the object being mocked as the spec/spec_set object.new_callable allows you to specify a different class, or callable object, that will be called to create the new object. By default
AsyncMock
is used for async functions andMagicMock
for the rest.A more powerful form of spec is autospec. If you set
autospec=True
then the mock will be created with a spec from the object being replaced. All attributes of the mock will also have the spec of the corresponding attribute of the object being replaced. Methods and functions being mocked will have their arguments checked and will raise aTypeError
if they are called with the wrong signature. For mocks replacing a class, their return value (the ‘instance’) will have the same spec as the class. See thecreate_autospec()
function and Autospeccing.Instead of
autospec=True
you can passautospec=some_object
to use an arbitrary object as the spec instead of the one being replaced.By default
patch()
will fail to replace attributes that don’t exist. If you pass increate=True
, and the attribute doesn’t exist, patch will create the attribute for you when the patched function is called, and delete it again after the patched function has exited. This is useful for writing tests against attributes that your production code creates at runtime. It is off by default because it can be dangerous. With it switched on you can write passing tests against APIs that don’t actually exist!Note
Changed in version 3.5: If you are patching builtins in a module then you don’t need to pass
create=True
, it will be added by default.Patch can be used as a
TestCase
class decorator. It works by decorating each test method in the class. This reduces the boilerplate code when your test methods share a common patchings set.patch()
finds tests by looking for method names that start withpatch.TEST_PREFIX
. By default this is'test'
, which matches the wayunittest
finds tests. You can specify an alternative prefix by settingpatch.TEST_PREFIX
.Patch can be used as a context manager, with the with statement. Here the patching applies to the indented block after the with statement. If you use “as” then the patched object will be bound to the name after the “as”; very useful if
patch()
is creating a mock object for you.patch()
takes arbitrary keyword arguments. These will be passed to theMock
(or new_callable) on construction.patch.dict(...)
,patch.multiple(...)
andpatch.object(...)
are available for alternate use-cases.
patch()
as function decorator, creating the mock for you and passing it into the decorated function:
>>> @patch('__main__.SomeClass')
... def function(normal_argument, mock_class):
... print(mock_class is SomeClass)
...
>>> function(None)
True
Patching a class replaces the class with a MagicMock
instance. If the class is instantiated in the code under test then it will be the return_value
of the mock that will be used.
If the class is instantiated multiple times you could use side_effect
to return a new mock each time. Alternatively you can set the return_value to be anything you want.
To configure return values on methods of instances on the patched class you must do this on the return_value
. For example:
>>> class Class:
... def method(self):
... pass
...
>>> with patch('__main__.Class') as MockClass:
... instance = MockClass.return_value
... instance.method.return_value = 'foo'
... assert Class() is instance
... assert Class().method() == 'foo'
...
If you use spec or spec_set and patch()
is replacing a class, then the return value of the created mock will have the same spec.
>>> Original = Class
>>> patcher = patch('__main__.Class', spec=True)
>>> MockClass = patcher.start()
>>> instance = MockClass()
>>> assert isinstance(instance, Original)
>>> patcher.stop()
The new_callable argument is useful where you want to use an alternative class to the default MagicMock
for the created mock. For example, if you wanted a NonCallableMock
to be used:
>>> thing = object()
>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:
... assert thing is mock_thing
... thing()
...
Traceback (most recent call last):
...
TypeError: 'NonCallableMock' object is not callable
Another use case might be to replace an object with an io.StringIO
instance:
>>> from io import StringIO
>>> def foo():
... print('Something')
...
>>> @patch('sys.stdout', new_callable=StringIO)
... def test(mock_stdout):
... foo()
... assert mock_stdout.getvalue() == 'Something\n'
...
>>> test()
When patch()
is creating a mock for you, it is common that the first thing you need to do is to configure the mock. Some of that configuration can be done in the call to patch. Any arbitrary keywords you pass into the call will be used to set attributes on the created mock:
>>> patcher = patch('__main__.thing', first='one', second='two')
>>> mock_thing = patcher.start()
>>> mock_thing.first
'one'
>>> mock_thing.second
'two'
As well as attributes on the created mock attributes, like the return_value
and side_effect
, of child mocks can also be configured. These aren’t syntactically valid to pass in directly as keyword arguments, but a dictionary with these as keys can still be expanded into a patch()
call using **
:
>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> patcher = patch('__main__.thing', **config)
>>> mock_thing = patcher.start()
>>> mock_thing.method()
3
>>> mock_thing.other()
Traceback (most recent call last):
...
KeyError
By default, attempting to patch a function in a module (or a method or an attribute in a class) that does not exist will fail with AttributeError
:
>>> @patch('sys.non_existing_attribute', 42)
... def test():
... assert sys.non_existing_attribute == 42
...
>>> test()
Traceback (most recent call last):
...
AttributeError: <module 'sys' (built-in)> does not have the attribute 'non_existing'
but adding create=True
in the call to patch()
will make the previous example work as expected:
>>> @patch('sys.non_existing_attribute', 42, create=True)
... def test(mock_stdout):
... assert sys.non_existing_attribute == 42
...
>>> test()
patch.object
patch.
object
( target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs )-
patch the named member (attribute) on an object (target) with a mock object.
patch.object()
can be used as a decorator, class decorator or a context manager. Arguments new, spec, create, spec_set, autospec and new_callable have the same meaning as forpatch()
. Likepatch()
,patch.object()
takes arbitrary keyword arguments for configuring the mock object it creates.When used as a class decorator
patch.object()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
You can either call patch.object()
with three arguments or two arguments. The three argument form takes the object to be patched, the attribute name and the object to replace the attribute with.
When calling with the two argument form you omit the replacement object, and a mock is created for you and passed in as an extra argument to the decorated function:
>>> @patch.object(