On this page
Linear
class torch.ao.nn.quantized.dynamic.Linear(in_features, out_features, bias_=True, dtype=torch.qint8)[source]- 
    
A dynamic quantized linear module with floating point tensor as inputs and outputs. We adopt the same interface as
torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.Similar to
torch.nn.Linear, attributes will be randomly initialized at module creation time and will be overwritten later- Variables
 
Examples:
>>> m = nn.quantized.dynamic.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])classmethod from_float(mod)[source]- 
      
Create a dynamic quantized module from a float module or qparams_dict
- Parameters
 - 
        
mod (Module) – a float module, either produced by torch.ao.quantization utilities or provided by the user
 
 
classmethod from_reference(ref_qlinear)[source]- 
      
Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized module :param ref_qlinear: a reference quantized module, either produced by :type ref_qlinear: Module :param torch.ao.quantization functions or provided by the user:
 
 
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
 https://pytorch.org/docs/2.1/generated/torch.ao.nn.quantized.dynamic.Linear.html