On this page
avg_pool3d
class torch.ao.nn.quantized.functional.avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]-
Applies 3D average-pooling operation in regions by step size steps. The number of output features is equal to the number of input planes.
Note
The input quantization parameters propagate to the output.
- Parameters
-
- input – quantized input tensor
- kernel_size – size of the pooling region. Can be a single number or a tuple
(kD, kH, kW) - stride – stride of the pooling operation. Can be a single number or a tuple
(sD, sH, sW). Default:kernel_size - padding – implicit zero paddings on both sides of the input. Can be a single number or a tuple
(padD, padH, padW). Default: 0 - ceil_mode – when True, will use
ceilinstead offloorin the formula to compute the output shape. Default:False - count_include_pad – when True, will include the zero-padding in the averaging calculation. Default:
True - divisor_override – if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.ao.nn.quantized.functional.avg_pool3d.html