On this page
avg_pool3d
- class torch.ao.nn.quantized.functional.avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]
- 
    Applies 3D average-pooling operation in regions by step size steps. The number of output features is equal to the number of input planes. Note The input quantization parameters propagate to the output. - Parameters
- 
      - input – quantized input tensor
- kernel_size – size of the pooling region. Can be a single number or a tuple (kD, kH, kW)
- stride – stride of the pooling operation. Can be a single number or a tuple (sD, sH, sW). Default:kernel_size
- padding – implicit zero paddings on both sides of the input. Can be a single number or a tuple (padD, padH, padW). Default: 0
- ceil_mode – when True, will use ceilinstead offloorin the formula to compute the output shape. Default:False
- count_include_pad – when True, will include the zero-padding in the averaging calculation. Default: True
- divisor_override – if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None
 
 
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
 https://pytorch.org/docs/2.1/generated/torch.ao.nn.quantized.functional.avg_pool3d.html