On this page
Linear
class torch.ao.nn.quantized.Linear(in_features, out_features, bias_=True, dtype=torch.qint8)
[source]-
A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as
torch.nn.Linear
, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.Similar to
Linear
, attributes will be randomly initialized at module creation time and will be overwritten later- Variables
-
- weight (Tensor) – the non-learnable quantized weights of the module of shape .
- bias (Tensor) – the non-learnable bias of the module of shape
. If
bias
isTrue
, the values are initialized to zero. - scale –
scale
parameter of output Quantized Tensor, type: double - zero_point –
zero_point
parameter for output Quantized Tensor, type: long
Examples:
>>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])
classmethod from_float(mod)
[source]-
Create a quantized module from an observed float module
- Parameters
-
mod (Module) – a float module, either produced by torch.ao.quantization utilities or provided by the user
classmethod from_reference(ref_qlinear, output_scale, output_zero_point)
[source]-
Create a (fbgemm/qnnpack) quantized module from a reference quantized module
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.ao.nn.quantized.Linear.html