On this page
torch.linalg.cross
torch.linalg.cross(input, other, *, dim=-1, out=None) → Tensor-
Computes the cross product of two 3-dimensional vectors.
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension
dim. It broadcasts over the batch dimensions.- Parameters
- Keyword Arguments
-
out (Tensor, optional) – the output tensor. Ignored if
None. Default:None.
Example
>>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.linalg.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> a = torch.randn(1, 3) # a is broadcast to match shape of b >>> a tensor([[-0.9941, -0.5132, 0.5681]]) >>> torch.linalg.cross(a, b) tensor([[ 1.4653, -1.2325, 1.4507], [ 1.4119, -2.6163, 0.1073], [ 0.3957, -1.9666, -1.0840], [ 0.2956, -0.3357, 0.2139]])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.linalg.cross.html