pytorch / 2 / generated / torch.nn.constantpad3d.html

ConstantPad3d

class torch.nn.ConstantPad3d(padding, value) [source]

Pads the input tensor boundaries with a constant value.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses ( padding_left \text{padding\_left} , padding_right \text{padding\_right} , padding_top \text{padding\_top} , padding_bottom \text{padding\_bottom} , padding_front \text{padding\_front} , padding_back \text{padding\_back} )

Shape:
  • Input: ( N , C , D i n , H i n , W i n ) (N, C, D_{in}, H_{in}, W_{in}) or ( C , D i n , H i n , W i n ) (C, D_{in}, H_{in}, W_{in}) .
  • Output: ( N , C , D o u t , H o u t , W o u t ) (N, C, D_{out}, H_{out}, W_{out}) or ( C , D o u t , H o u t , W o u t ) (C, D_{out}, H_{out}, W_{out}) , where

    D o u t = D i n + padding_front + padding_back D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}

    H o u t = H i n + padding_top + padding_bottom H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    W o u t = W i n + padding_left + padding_right W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

Examples:

>>> m = nn.ConstantPad3d(3, 3.5)
>>> input = torch.randn(16, 3, 10, 20, 30)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
>>> output = m(input)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.ConstantPad3d.html