On this page
ReflectionPad1d
class torch.nn.ReflectionPad1d(padding)
[source]-
Pads the input tensor using the reflection of the input boundary.
For
N
-dimensional padding, usetorch.nn.functional.pad()
.- Parameters
-
padding (int, tuple) – the size of the padding. If is
int
, uses the same padding in all boundaries. If a 2-tuple
, uses ( , )
- Shape:
-
- Input: or .
Output: or , where
Examples:
>>> m = nn.ReflectionPad1d(2) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4) >>> input tensor([[[0., 1., 2., 3.], [4., 5., 6., 7.]]]) >>> m(input) tensor([[[2., 1., 0., 1., 2., 3., 2., 1.], [6., 5., 4., 5., 6., 7., 6., 5.]]]) >>> # using different paddings for different sides >>> m = nn.ReflectionPad1d((3, 1)) >>> m(input) tensor([[[3., 2., 1., 0., 1., 2., 3., 2.], [7., 6., 5., 4., 5., 6., 7., 6.]]])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.ReflectionPad1d.html