pytorch / 2 / generated / torch.nn.reflectionpad1d.html

ReflectionPad1d

class torch.nn.ReflectionPad1d(padding) [source]

Pads the input tensor using the reflection of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 2-tuple, uses ( padding_left \text{padding\_left} , padding_right \text{padding\_right} )

Shape:
  • Input: ( C , W i n ) (C, W_{in}) or ( N , C , W i n ) (N, C, W_{in}) .
  • Output: ( C , W o u t ) (C, W_{out}) or ( N , C , W o u t ) (N, C, W_{out}) , where

    W o u t = W i n + padding_left + padding_right W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

Examples:

>>> m = nn.ReflectionPad1d(2)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
         [4., 5., 6., 7.]]])
>>> m(input)
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
         [6., 5., 4., 5., 6., 7., 6., 5.]]])
>>> # using different paddings for different sides
>>> m = nn.ReflectionPad1d((3, 1))
>>> m(input)
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
         [7., 6., 5., 4., 5., 6., 7., 6.]]])

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.ReflectionPad1d.html