pytorch / 2 / generated / torch.nn.reflectionpad3d.html

ReflectionPad3d

class torch.nn.ReflectionPad3d(padding) [source]

Pads the input tensor using the reflection of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses ( padding_left \text{padding\_left} , padding_right \text{padding\_right} , padding_top \text{padding\_top} , padding_bottom \text{padding\_bottom} , padding_front \text{padding\_front} , padding_back \text{padding\_back} )

Shape:
  • Input: ( N , C , D i n , H i n , W i n ) (N, C, D_{in}, H_{in}, W_{in}) or ( C , D i n , H i n , W i n ) (C, D_{in}, H_{in}, W_{in}) .
  • Output: ( N , C , D o u t , H o u t , W o u t ) (N, C, D_{out}, H_{out}, W_{out}) or ( C , D o u t , H o u t , W o u t ) (C, D_{out}, H_{out}, W_{out}) , where

    D o u t = D i n + padding_front + padding_back D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}

    H o u t = H i n + padding_top + padding_bottom H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    W o u t = W i n + padding_left + padding_right W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

Examples:

>>> m = nn.ReflectionPad3d(1)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
>>> m(input)
tensor([[[[[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]],
          [[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]]]]])

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.ReflectionPad3d.html