On this page
RNNCell
class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh', device=None, dtype=None)
[source]-
An Elman RNN cell with tanh or ReLU non-linearity.
If
nonlinearity
is‘relu’
, then ReLU is used in place of tanh.- Parameters
-
- input_size (int) – The number of expected features in the input
x
- hidden_size (int) – The number of features in the hidden state
h
- bias (bool) – If
False
, then the layer does not use bias weightsb_ih
andb_hh
. Default:True
- nonlinearity (str) – The non-linearity to use. Can be either
'tanh'
or'relu'
. Default:'tanh'
- input_size (int) – The number of expected features in the input
- Inputs: input, hidden
-
- input: tensor containing input features
- hidden: tensor containing the initial hidden state Defaults to zero if not provided.
- Outputs: h’
-
- h’ of shape
(batch, hidden_size)
: tensor containing the next hidden state for each element in the batch
- h’ of shape
- Shape:
-
- input:
or
tensor containing input features where
=
input_size
. - hidden:
or
tensor containing the initial hidden state where
=
hidden_size
. Defaults to zero if not provided. - output: or tensor containing the next hidden state.
- input:
or
tensor containing input features where
=
- Variables
-
- weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape
(hidden_size, input_size)
- weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape
(hidden_size, hidden_size)
- bias_ih – the learnable input-hidden bias, of shape
(hidden_size)
- bias_hh – the learnable hidden-hidden bias, of shape
(hidden_size)
- weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape
Note
All the weights and biases are initialized from where
Examples:
>>> rnn = nn.RNNCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.RNNCell.html