pytorch / 2 / generated / torch.nn.rnncell.html

RNNCell

class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh', device=None, dtype=None) [source]

An Elman RNN cell with tanh or ReLU non-linearity.

h = tanh ( W i h x + b i h + W h h h + b h h ) h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})

If nonlinearity is ‘relu’, then ReLU is used in place of tanh.

Parameters
  • input_size (int) – The number of expected features in the input x
  • hidden_size (int) – The number of features in the hidden state h
  • bias (bool) – If False, then the layer does not use bias weights b_ih and b_hh. Default: True
  • nonlinearity (str) – The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
Inputs: input, hidden
  • input: tensor containing input features
  • hidden: tensor containing the initial hidden state Defaults to zero if not provided.
Outputs: h’
  • h’ of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch
Shape:
  • input: ( N , H i n ) (N, H_{in}) or ( H i n ) (H_{in}) tensor containing input features where H i n H_{in} = input_size.
  • hidden: ( N , H o u t ) (N, H_{out}) or ( H o u t ) (H_{out}) tensor containing the initial hidden state where H o u t H_{out} = hidden_size. Defaults to zero if not provided.
  • output: ( N , H o u t ) (N, H_{out}) or ( H o u t ) (H_{out}) tensor containing the next hidden state.
Variables
  • weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (hidden_size, input_size)
  • weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (hidden_size, hidden_size)
  • bias_ih – the learnable input-hidden bias, of shape (hidden_size)
  • bias_hh – the learnable hidden-hidden bias, of shape (hidden_size)

Note

All the weights and biases are initialized from U ( k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = 1 hidden_size k = \frac{1}{\text{hidden\_size}}

Examples:

>>> rnn = nn.RNNCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
...     hx = rnn(input[i], hx)
...     output.append(hx)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.RNNCell.html