On this page
TransformerDecoder
class torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None)
[source]-
TransformerDecoder is a stack of N decoder layers
- Parameters
-
- decoder_layer – an instance of the TransformerDecoderLayer() class (required).
- num_layers – the number of sub-decoder-layers in the decoder (required).
- norm – the layer normalization component (optional).
- Examples::
-
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = transformer_decoder(tgt, memory)
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, tgt_is_causal=None, memory_is_causal=False)
[source]-
Pass the inputs (and mask) through the decoder layer in turn.
- Parameters
-
- tgt (Tensor) – the sequence to the decoder (required).
- memory (Tensor) – the sequence from the last layer of the encoder (required).
- tgt_mask (Optional[Tensor]) – the mask for the tgt sequence (optional).
- memory_mask (Optional[Tensor]) – the mask for the memory sequence (optional).
- tgt_key_padding_mask (Optional[Tensor]) – the mask for the tgt keys per batch (optional).
- memory_key_padding_mask (Optional[Tensor]) – the mask for the memory keys per batch (optional).
- tgt_is_causal (Optional[bool]) – If specified, applies a causal mask as
tgt mask
. Default:None
; try to detect a causal mask. Warning:tgt_is_causal
provides a hint thattgt_mask
is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility. - memory_is_causal (bool) – If specified, applies a causal mask as
memory mask
. Default:False
. Warning:memory_is_causal
provides a hint thatmemory_mask
is the causal mask. Providing incorrect hints can result in incorrect execution, including forward and backward compatibility.
- Return type
- Shape:
-
see the docs in Transformer class.
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.TransformerDecoder.html