pytorch / 2 / generated / torch.signal.windows.hann.html

torch.signal.windows.hann

torch.signal.windows.hann(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) [source]

Computes the Hann window.

The Hann window is defined as follows:

w n = 1 2 [ 1 cos ( 2 π n M 1 ) ] = sin 2 ( π n M 1 ) w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{M - 1} \right)

The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if M is even and sym is True.

Parameters

M (int) – the length of the window. In other words, the number of points of the returned window.

Keyword Arguments
  • sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True.
  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).
  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.
  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.
Return type

Tensor

Examples:

>>> # Generates a symmetric Hann window.
>>> torch.signal.windows.hann(10)
tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])

>>> # Generates a periodic Hann window.
>>> torch.signal.windows.hann(10, sym=False)
tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.signal.windows.hann.html