On this page
torch.signal.windows.kaiser
torch.signal.windows.kaiser(M, *, beta=12.0, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)
[source]-
Computes the Kaiser window.
The Kaiser window is defined as follows:
where
I_0
is the zeroth order modified Bessel function of the first kind (seetorch.special.i0()
), andN = M - 1 if sym else M
.The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if
M
is even andsym
isTrue
.- Parameters
-
M (int) – the length of the window. In other words, the number of points of the returned window.
- Keyword Arguments
-
- beta (float, optional) – shape parameter for the window. Must be non-negative. Default: 12.0
- sym (bool, optional) – If
False
, returns a periodic window suitable for use in spectral analysis. IfTrue
, returns a symmetric window suitable for use in filter design. Default:True
. - dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). - layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
. - device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. - requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Return type
Examples:
>>> # Generates a symmetric gaussian window with a standard deviation of 1.0. >>> torch.signal.windows.kaiser(5) tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05]) >>> # Generates a periodic gaussian window and standard deviation equal to 0.9. >>> torch.signal.windows.kaiser(5, sym=False,std=0.9) tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.signal.windows.kaiser.html