On this page
tf.keras.backend.random_normal_variable
Instantiates a variable with values drawn from a normal distribution.
tf.keras.backend.random_normal_variable(
shape, mean, scale, dtype=None, name=None, seed=None
)
Arguments | |
---|---|
shape |
Tuple of integers, shape of returned Keras variable. |
mean |
Float, mean of the normal distribution. |
scale |
Float, standard deviation of the normal distribution. |
dtype |
String, dtype of returned Keras variable. |
name |
String, name of returned Keras variable. |
seed |
Integer, random seed. |
Returns | |
---|---|
A Keras variable, filled with drawn samples. |
Example:
# TensorFlow example
>>> kvar = K.random_normal_variable((2,3), 0, 1)
>>> kvar
<tensorflow.python.ops.variables.Variable object at 0x10ab12dd0>
>>> K.eval(kvar)
array([[ 1.19591331, 0.68685907, -0.63814116],
[ 0.92629528, 0.28055015, 1.70484698]], dtype=float32)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/backend/random_normal_variable