On this page
tf.keras.backend.zeros
Instantiates an all-zeros variable and returns it.
tf.keras.backend.zeros(
shape, dtype=None, name=None
)
Arguments | |
---|---|
shape |
Tuple or list of integers, shape of returned Keras variable |
dtype |
data type of returned Keras variable |
name |
name of returned Keras variable |
Returns | |
---|---|
A variable (including Keras metadata), filled with 0.0 . Note that if shape was symbolic, we cannot return a variable, and will return a dynamically-shaped tensor instead. |
Example:
from tensorflow.keras import backend as K
kvar = K.zeros((3,4))
K.eval(kvar)
# array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.],
# [ 0., 0., 0., 0.]], dtype=float32)
A = tf.constant([1,2,3])
kvar2 = K.zeros(A.shape) # [0., 0., 0.] float32 by default
kvar3 = K.zeros(A.shape,dtype=tf.int32) # [0, 0, 0] with int32 dtype
kvar4 = K.zeros([2,3]) # [[0., 0., 0.], [0., 0., 0.]]
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/backend/zeros