On this page
tf.edit_distance
Computes the Levenshtein distance between sequences.
tf.edit_distance(
hypothesis, truth, normalize=True, name='edit_distance'
)
This operation takes variable-length sequences (hypothesis
and truth
), each provided as a SparseTensor
, and computes the Levenshtein distance. You can normalize the edit distance by length of truth
by setting normalize
to true.
For example, given the following input:
# 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
# (0,0) = ["a"]
# (1,0) = ["b"]
hypothesis = tf.sparse.SparseTensor(
[[0, 0, 0],
[1, 0, 0]],
["a", "b"],
(2, 1, 1))
# 'truth' is a tensor of shape `[2, 2]` with variable-length values:
# (0,0) = []
# (0,1) = ["a"]
# (1,0) = ["b", "c"]
# (1,1) = ["a"]
truth = tf.sparse.SparseTensor(
[[0, 1, 0],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0]],
["a", "b", "c", "a"],
(2, 2, 2))
normalize = True
This operation would return the following:
# 'output' is a tensor of shape `[2, 2]` with edit distances normalized
# by 'truth' lengths.
output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
[0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis
Args | |
---|---|
hypothesis |
A SparseTensor containing hypothesis sequences. |
truth |
A SparseTensor containing truth sequences. |
normalize |
A bool . If True , normalizes the Levenshtein distance by length of truth. |
name |
A name for the operation (optional). |
Returns | |
---|---|
A dense Tensor with rank R - 1 , where R is the rank of the SparseTensor inputs hypothesis and truth . |
Raises | |
---|---|
TypeError |
If either hypothesis or truth are not a SparseTensor . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/edit_distance