On this page
tf.lookup.experimental.DatasetInitializer
Creates a table initializer from a tf.data.Dataset
.
tf.lookup.experimental.DatasetInitializer(
dataset
)
Sample usage:
keys = tf.data.Dataset.range(100)
values = tf.data.Dataset.range(100).map(
lambda x: string_ops.as_string(x * 2))
ds = tf.data.Dataset.zip((keys, values))
init = tf.lookup.experimental.DatasetInitializer(ds)
table = tf.lookup.StaticHashTable(init, "")
output = table.lookup([0, 1, 2])
assertEquals(outputs, ["0", "2", "4"])
Raises: ValueError if dataset
doesn't conform to specifications.
Args | |
---|---|
dataset |
A tf.data.Dataset object that produces tuples of scalars. The first scalar is treated as a key and the second as value. |
Attributes | |
---|---|
dataset |
A tf.data.Dataset object that produces tuples of scalars. The first scalar is treated as a key and the second as value. |
key_dtype |
The expected table key dtype. |
value_dtype |
The expected table value dtype. |
Methods
initialize
initialize(
table
)
Returns the table initialization op.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/lookup/experimental/DatasetInitializer