On this page
Numbers
Standard Numeric Types
Abstract number types
Core.NumberType
  Number
   Abstract supertype for all number types.
sourceCore.RealType
  Real <: Number
   Abstract supertype for all real numbers.
sourceCore.AbstractFloatType
  AbstractFloat <: Real
   Abstract supertype for all floating point numbers.
sourceCore.IntegerType
  Integer <: Real
   Abstract supertype for all integers.
sourceCore.SignedType
  Signed <: Integer
   Abstract supertype for all signed integers.
sourceCore.UnsignedType
  Unsigned <: Integer
   Abstract supertype for all unsigned integers.
sourceBase.AbstractIrrationalType
  AbstractIrrational <: Real
   Number type representing an exact irrational value, which is automatically rounded to the correct precision in arithmetic operations with other numeric quantities.
Subtypes MyIrrational <: AbstractIrrational should implement at least ==(::MyIrrational, ::MyIrrational), hash(x::MyIrrational, h::UInt), and convert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents √n for integers n will give a rational result when n is a perfect square), then it should also implement isinteger, iszero, isone, and == with Real values (since all of these default to false for AbstractIrrational types), as well as defining hash to equal that of the corresponding Rational.
Concrete number types
Core.Float16Type
  Float16 <: AbstractFloat
   16-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 5 exponent, 10 fraction bits.
sourceCore.Float32Type
  Float32 <: AbstractFloat
   32-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 8 exponent, 23 fraction bits.
sourceCore.Float64Type
  Float64 <: AbstractFloat
   64-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 11 exponent, 52 fraction bits.
sourceBase.MPFR.BigFloatType
  BigFloat <: AbstractFloat
   Arbitrary precision floating point number type.
sourceCore.BoolType
  Bool <: Integer
   Boolean type, containing the values true and false.
Bool is a kind of number: false is numerically equal to 0 and true is numerically equal to 1. Moreover, false acts as a multiplicative "strong zero":
julia> false == 0
true
julia> true == 1
true
julia> 0 * NaN
NaN
julia> false * NaN
0.0 source
  Core.Int8Type
  Int8 <: Signed
   8-bit signed integer type.
sourceCore.UInt8Type
  UInt8 <: Unsigned
   8-bit unsigned integer type.
sourceCore.Int16Type
  Int16 <: Signed
   16-bit signed integer type.
sourceCore.UInt16Type
  UInt16 <: Unsigned
   16-bit unsigned integer type.
sourceCore.Int32Type
  Int32 <: Signed
   32-bit signed integer type.
sourceCore.UInt32Type
  UInt32 <: Unsigned
   32-bit unsigned integer type.
sourceCore.Int64Type
  Int64 <: Signed
   64-bit signed integer type.
sourceCore.UInt64Type
  UInt64 <: Unsigned
   64-bit unsigned integer type.
sourceCore.Int128Type
  Int128 <: Signed
   128-bit signed integer type.
sourceCore.UInt128Type
  UInt128 <: Unsigned
   128-bit unsigned integer type.
sourceBase.GMP.BigIntType
  BigInt <: Signed
   Arbitrary precision integer type.
sourceBase.ComplexType
  Complex{T<:Real} <: Number
   Complex number type with real and imaginary part of type T.
ComplexF16, ComplexF32 and ComplexF64 are aliases for Complex{Float16}, Complex{Float32} and Complex{Float64} respectively.
Base.RationalType
  Rational{T<:Integer} <: Real
   Rational number type, with numerator and denominator of type T. Rationals are checked for overflow.
Base.IrrationalType
  Irrational{sym} <: AbstractIrrational
   Number type representing an exact irrational value denoted by the symbol sym.
Data Formats
Base.digitsFunction
  digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
   Return an array with element type T (default Int) of the digits of n in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such that n == sum([digits[k]*base^(k-1) for k=1:length(digits)]).
Examples
julia> digits(10, base = 10)
2-element Array{Int64,1}:
 0
 1
julia> digits(10, base = 2)
4-element Array{Int64,1}:
 0
 1
 0
 1
julia> digits(10, base = 2, pad = 6)
6-element Array{Int64,1}:
 0
 1
 0
 1
 0
 0 source
  Base.digits!Function
  digits!(array, n::Integer; base::Integer = 10)
   Fills an array of the digits of n in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2,2,2,2], 10, base = 2)
4-element Array{Int64,1}:
 0
 1
 0
 1
julia> digits!([2,2,2,2,2,2], 10, base = 2)
6-element Array{Int64,1}:
 0
 1
 0
 1
 0
 0 source
  Base.bitstringFunction
  bitstring(n)
   A string giving the literal bit representation of a number.
Examples
julia> bitstring(4)
"0000000000000000000000000000000000000000000000000000000000000100"
julia> bitstring(2.2)
"0100000000000001100110011001100110011001100110011001100110011010" source
  Base.parseFunction
  parse(type, str; base)
   Parse a string as a number. For Integer types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number. Complex types are parsed from decimal strings of the form "R±Iim" as a Complex(R,I) of the requested type; "i" or "j" can also be used instead of "im", and "R" or "Iim" are also permitted. If the string does not contain a valid number, an error is raised.
parse(Bool, str) requires at least Julia 1.1.
Examples
julia> parse(Int, "1234")
1234
julia> parse(Int, "1234", base = 5)
194
julia> parse(Int, "afc", base = 16)
2812
julia> parse(Float64, "1.2e-3")
0.0012
julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")
0.32 + 4.5im source
  Base.tryparseFunction
  tryparse(type, str; base)
   Like parse, but returns either a value of the requested type, or nothing if the string does not contain a valid number.
Base.bigFunction
  big(x)
   Convert a number to a maximum precision representation (typically BigInt or BigFloat). See BigFloat for information about some pitfalls with floating-point numbers.
Base.signedFunction
  signed(T::Integer)
   Convert an integer bitstype to the signed type of the same size.
Examples
julia> signed(UInt16)
Int16
julia> signed(UInt64)
Int64 source
  signed(x)
   Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
sourceBase.unsignedFunction
  unsigned(T::Integer)
   Convert an integer bitstype to the unsigned type of the same size.
Examples
julia> unsigned(Int16)
UInt16
julia> unsigned(UInt64)
UInt64 source
  Base.floatMethod
  float(x)
   Convert a number or array to a floating point data type.
sourceBase.Math.significandFunction
  significand(x)
   Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number. If x is a non-zero finite number, then the result will be a number of the same type on the interval $[1,2)$. Otherwise x is returned.
Examples
julia> significand(15.2)/15.2
0.125
julia> significand(15.2)*8
15.2 source
  Base.Math.exponentFunction
  exponent(x) -> Int
   Get the exponent of a normalized floating-point number.
sourceBase.complexMethod
  complex(r, [i])
   Convert real numbers or arrays to complex. i defaults to zero.
Examples
julia> complex(7)
7 + 0im
julia> complex([1, 2, 3])
3-element Array{Complex{Int64},1}:
 1 + 0im
 2 + 0im
 3 + 0im source
  Base.bswapFunction
  bswap(n)
   Reverse the byte order of n.
(See also ntoh and hton to convert between the current native byte order and big-endian order.)
Examples
julia> a = bswap(0x10203040)
0x40302010
julia> bswap(a)
0x10203040
julia> string(1, base = 2)
"1"
julia> string(bswap(1), base = 2)
"100000000000000000000000000000000000000000000000000000000" source
  Base.hex2bytesFunction
  hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})
   Given a string or array s of ASCII codes for a sequence of hexadecimal digits, returns a Vector{UInt8} of bytes corresponding to the binary representation: each successive pair of hexadecimal digits in s gives the value of one byte in the return vector.
The length of s must be even, and the returned array has half of the length of s. See also hex2bytes! for an in-place version, and bytes2hex for the inverse.
Examples
julia> s = string(12345, base = 16)
"3039"
julia> hex2bytes(s)
2-element Array{UInt8,1}:
 0x30
 0x39
julia> a = b"01abEF"
6-element Base.CodeUnits{UInt8,String}:
 0x30
 0x31
 0x61
 0x62
 0x45
 0x46
julia> hex2bytes(a)
3-element Array{UInt8,1}:
 0x01
 0xab
 0xef source
  Base.hex2bytes!Function
  hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})
   Convert an array s of bytes representing a hexadecimal string to its binary representation, similar to hex2bytes except that the output is written in-place in d. The length of s must be exactly twice the length of d.
Base.bytes2hexFunction
  bytes2hex(a::AbstractArray{UInt8}) -> String
bytes2hex(io::IO, a::AbstractArray{UInt8})
   Convert an array a of bytes to its hexadecimal string representation, either returning a String via bytes2hex(a) or writing the string to an io stream via bytes2hex(io, a). The hexadecimal characters are all lowercase.
Examples
julia> a = string(12345, base = 16)
"3039"
julia> b = hex2bytes(a)
2-element Array{UInt8,1}:
 0x30
 0x39
julia> bytes2hex(b)
"3039" source
  General Number Functions and Constants
Base.oneFunction
  one(x)
one(T::type)
   Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively one(T) can take a type T, in which case one returns a multiplicative identity for any x of type T.
If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x) should return an identity value of the same precision (and shape, for matrices) as x.
If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit instead.
Examples
julia> one(3.7)
1.0
julia> one(Int)
1
julia> import Dates; one(Dates.Day(1))
1 source
  Base.oneunitFunction
  oneunit(x::T)
oneunit(T::Type)
   Returns T(one(x)), where T is either the type of the argument or (if a type is passed) the argument. This differs from one for dimensionful quantities: one is dimensionless (a multiplicative identity) while oneunit is dimensionful (of the same type as x, or of type T).
Examples
julia> oneunit(3.7)
1.0
julia> import Dates; oneunit(Dates.Day)
1 day source
  Base.zeroFunction
  zero(x)
   Get the additive identity element for the type of x (x can also specify the type itself).
Examples
julia> zero(1)
0
julia> zero(big"2.0")
0.0
julia> zero(rand(2,2))
2×2 Array{Float64,2}:
 0.0  0.0
 0.0  0.0 source
  Base.imConstant
  im
   The imaginary unit.
Examples
julia> im * im
-1 + 0im source
  Base.MathConstants.piConstant
  π
pi
   The constant pi.
Examples
julia> pi
π = 3.1415926535897... source
  Base.MathConstants.ℯConstant
  ℯ
e
   The constant ℯ.
Examples
julia> ℯ
ℯ = 2.7182818284590... source
  Base.MathConstants.catalanConstant
  catalan
   Catalan's constant.
Examples
julia> Base.MathConstants.catalan
catalan = 0.9159655941772... source
  Base.MathConstants.eulergammaConstant
  γ
eulergamma
   Euler's constant.
Examples
julia> Base.MathConstants.eulergamma
γ = 0.5772156649015... source
  Base.MathConstants.goldenConstant
  φ
golden
   The golden ratio.
Examples
julia> Base.MathConstants.golden
φ = 1.6180339887498... source
  Base.InfConstant
  Inf, Inf64
   Positive infinity of type Float64.
Base.Inf32Constant
  Inf32
   Positive infinity of type Float32.
Base.Inf16Constant
  Inf16
   Positive infinity of type Float16.
Base.NaNConstant
  NaN, NaN64
   A not-a-number value of type Float64.
Base.NaN32Constant
  NaN32
   A not-a-number value of type Float32.
Base.NaN16Constant
  NaN16
   A not-a-number value of type Float16.
Base.issubnormalFunction
  issubnormal(f) -> Bool
   Test whether a floating point number is subnormal.
sourceBase.isfiniteFunction
  isfinite(f) -> Bool
   Test whether a number is finite.
Examples
julia> isfinite(5)
true
julia> isfinite(NaN32)
false source
  Base.isinfFunction
  isinf(f) -> Bool
   Test whether a number is infinite.
sourceBase.isnanFunction
  isnan(f) -> Bool
   Test whether a number value is a NaN, an indeterminate value which is neither an infinity nor a finite number ("not a number").
sourceBase.iszeroFunction
  iszero(x)
   Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.
Examples
julia> iszero(0.0)
true
julia> iszero([1, 9, 0])
false
julia> iszero([false, 0, 0])
true source
  Base.isoneFunction
  isone(x)
   Return true if x == one(x); if x is an array, this checks whether x is an identity matrix.
Examples
julia> isone(1.0)
true
julia> isone([1 0; 0 2])
false
julia> isone([1 0; 0 true])
true source
  Base.nextfloatFunction
  nextfloat(x::AbstractFloat, n::Integer)
   The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n < 0.
nextfloat(x::AbstractFloat)
   Return the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g. if x is Inf or NaN), then return x.
Base.prevfloatFunction
  prevfloat(x::AbstractFloat, n::Integer)
   The result of n iterative applications of prevfloat to x if n >= 0, or -n applications of nextfloat if n < 0.
prevfloat(x::AbstractFloat)
   Return the largest floating point number y of the same type as x such y < x. If no such y exists (e.g. if x is -Inf or NaN), then return x.
Base.isintegerFunction
  isinteger(x) -> Bool
   Test whether x is numerically equal to some integer.
Examples
julia> isinteger(4.0)
true source
  Base.isrealFunction
  isreal(x) -> Bool
   Test whether x or all its elements are numerically equal to some real number including infinities and NaNs. isreal(x) is true if isequal(x, real(x)) is true.
Examples
julia> isreal(5.)
true
julia> isreal(Inf + 0im)
true
julia> isreal([4.; complex(0,1)])
false source
  Core.Float32Method
  Float32(x [, mode::RoundingMode])
   Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0
   See RoundingMode for available rounding modes.
Core.Float64Method
  Float64(x [, mode::RoundingMode])
   Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936
   See RoundingMode for available rounding modes.
Base.Rounding.roundingFunction
  rounding(T)
   Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion.
See RoundingMode for available modes.
Base.Rounding.setroundingMethod
  setrounding(T, mode)
   Set the rounding mode of floating point type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default RoundNearest.
Note that this is currently only supported for T == BigFloat.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.Rounding.setroundingMethod
  setrounding(f::Function, T, mode)
   Change the rounding mode of floating point type T for the duration of f. It is logically equivalent to:
old = rounding(T)
setrounding(T, mode)
f()
setrounding(T, old)
   See RoundingMode for available rounding modes.
Base.Rounding.get_zero_subnormalsFunction
  get_zero_subnormals() -> Bool
   Return false if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and true if they might be converted to zeros.
This function only affects the current thread.
Base.Rounding.set_zero_subnormalsFunction
  set_zero_subnormals(yes::Bool) -> Bool
   If yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true unless yes==true but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true) can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y).
This function only affects the current thread.
Integers
Base.count_onesFunction
  count_ones(x::Integer) -> Integer
   Number of ones in the binary representation of x.
Examples
julia> count_ones(7)
3 source
  Base.count_zerosFunction
  count_zeros(x::Integer) -> Integer
   Number of zeros in the binary representation of x.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1))
16 source
  Base.leading_zerosFunction
  leading_zeros(x::Integer) -> Integer
   Number of zeros leading the binary representation of x.
Examples
julia> leading_zeros(Int32(1))
31 source
  Base.leading_onesFunction
  leading_ones(x::Integer) -> Integer
   Number of ones leading the binary representation of x.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2))
31 source
  Base.trailing_zerosFunction
  trailing_zeros(x::Integer) -> Integer
   Number of zeros trailing the binary representation of x.
Examples
julia> trailing_zeros(2)
1 source
  Base.trailing_onesFunction
  trailing_ones(x::Integer) -> Integer
   Number of ones trailing the binary representation of x.
Examples
julia> trailing_ones(3)
2 source
  Base.isoddFunction
  isodd(x::Integer) -> Bool
   Return true if x is odd (that is, not divisible by 2), and false otherwise.
Examples
julia> isodd(9)
true
julia> isodd(10)
false source
  Base.isevenFunction
  iseven(x::Integer) -> Bool
   Return true if x is even (that is, divisible by 2), and false otherwise.
Examples
julia> iseven(9)
false
julia> iseven(10)
true source
  Core.@int128_strMacro
  @int128_str str
@int128_str(str)
   @int128_str parses a string into a Int128 Throws an ArgumentError if the string is not a valid integer
Core.@uint128_strMacro
  @uint128_str str
@uint128_str(str)
   @uint128_str parses a string into a UInt128 Throws an ArgumentError if the string is not a valid integer
BigFloats and BigInts
The BigFloat and BigInt types implements arbitrary-precision floating point and integer arithmetic, respectively. For BigFloat the GNU MPFR library is used, and for BigInt the GNU Multiple Precision Arithmetic Library (GMP) is used.
Base.MPFR.BigFloatMethod
  BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])
   Create an arbitrary precision floating point number from x, with precision precision. The rounding argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real) is the same as convert(BigFloat,x), except if x itself is already BigFloat, in which case it will return a value with the precision set to the current global precision; convert will always return x.
BigFloat(x::AbstractString) is identical to parse. This is provided for convenience since decimal literals are converted to Float64 when parsed, so BigFloat(2.1) may not yield what you expect.
precision as a keyword argument requires at least Julia 1.1. In Julia 1.0 precision is the second positional argument (BigFloat(x, precision)).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float64
2.100000000000000088817841970012523233890533447265625
julia> BigFloat("2.1") # the closest BigFloat to 2.1
2.099999999999999999999999999999999999999999999999999999999999999999999999999986
julia> BigFloat("2.1", RoundUp)
2.100000000000000000000000000000000000000000000000000000000000000000000000000021
julia> BigFloat("2.1", RoundUp, precision=128)
2.100000000000000000000000000000000000007
   See also
@big_strroundingandsetroundingprecisionandsetprecision
Base.precisionFunction
  precision(num::AbstractFloat)
   Get the precision of a floating point number, as defined by the effective number of bits in the significand.
sourceBase.precisionMethod
  precision(BigFloat)
   Get the precision (in bits) currently used for BigFloat arithmetic.
Base.MPFR.setprecisionFunction
  setprecision([T=BigFloat,] precision::Int)
   Set the precision (in bits) to be used for T arithmetic.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
setprecision(f::Function, [T=BigFloat,] precision::Integer)
   Change the T arithmetic precision (in bits) for the duration of f. It is logically equivalent to:
old = precision(BigFloat)
setprecision(BigFloat, precision)
f()
setprecision(BigFloat, old)
   Often used as setprecision(T, precision) do ... end
Note: nextfloat(), prevfloat() do not use the precision mentioned by setprecision
Base.GMP.BigIntMethod
  BigInt(x)
   Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int). The usual mathematical operators are defined for this type, and results are promoted to a BigInt.
Instances can be constructed from strings via parse, or using the big string literal.
Examples
julia> parse(BigInt, "42")
42
julia> big"313"
313
julia> BigInt(10)^19
10000000000000000000 source
  Core.@big_strMacro
  @big_str str
@big_str(str)
   Parse a string into a BigInt or BigFloat, and throw an ArgumentError if the string is not a valid number. For integers _ is allowed in the string as a separator.
Examples
julia> big"123_456"
123456
julia> big"7891.5"
7891.5 source
  © 2009–2020 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
 https://docs.julialang.org/en/v1.5.3/base/numbers/