On this page
matplotlib.axes.Axes.hist2d
Axes.hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None, cmax=None, *, data=None, **kwargs)
-
Make a 2D histogram plot.
Parameters: x, y: array_like, shape (n, )
Input values
bins: [None | int | [int, int] | array_like | [array, array]]
The bin specification:
- If int, the number of bins for the two dimensions (nx=ny=bins).
- If [int, int], the number of bins in each dimension (nx, ny = bins).
- If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
- If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).
The default value is 10.
range : array_like shape(2, 2), optional, default: None
The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram.
normed : boolean, optional, default: False
Normalize histogram.
weights : array_like, shape (n, ), optional, default: None
An array of values w_i weighing each sample (x_i, y_i).
cmin : scalar, optional, default: None
All bins that has count less than cmin will not be displayed and these count values in the return value count histogram will also be set to nan upon return
cmax : scalar, optional, default: None
All bins that has count more than cmax will not be displayed (set to none before passing to imshow) and these count values in the return value count histogram will also be set to nan upon return
Returns: The return value is
(counts, xedges, yedges, Image)
.Other Parameters: cmap : {Colormap, string}, optional
A
matplotlib.colors.Colormap
instance. If not set, use rc settings.norm : Normalize, optional
A
matplotlib.colors.Normalize
instance is used to scale luminance data to[0, 1]
. If not set, defaults toNormalize()
.vmin/vmax : {None, scalar}, optional
Arguments passed to the
Normalize
instance.alpha :
0 <= scalar <= 1
orNone
, optionalThe alpha blending value.
See also
hist
- 1D histogram
Notes
Rendering the histogram with a logarithmic color scale is accomplished by passing a
colors.LogNorm
instance to the norm keyword argument. Likewise, power-law normalization (similar in effect to gamma correction) can be accomplished withcolors.PowerNorm
.Note
In addition to the above described arguments, this function can take a data keyword argument. If such a data argument is given, the following arguments are replaced by data[<arg>]:
- All arguments with the following names: ‘weights’, ‘x’, ‘y’.
© 2012–2017 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
http://matplotlib.org/2.1.0/api/_as_gen/matplotlib.axes.Axes.hist2d.html