On this page
matplotlib.axes.Axes.xcorr
Axes.xcorr(x, y, normed=True, detrend=<function detrend_none>, usevlines=True, maxlags=10, *, data=None, **kwargs)
-
Plot the cross correlation between x and y.
The correlation with lag k is defined as sum_n x[n+k] * conj(y[n]).
Parameters: x : sequence of scalars of length n
y : sequence of scalars of length n
hold : boolean, optional, deprecated, default: True
detrend : callable, optional, default:
mlab.detrend_none
x is detrended by the
detrend
callable. Default is no normalization.normed : boolean, optional, default: True
if True, input vectors are normalised to unit length.
usevlines : boolean, optional, default: True
if True, Axes.vlines is used to plot the vertical lines from the origin to the acorr. Otherwise, Axes.plot is used.
maxlags : integer, optional, default: 10
number of lags to show. If None, will return all 2 * len(x) - 1 lags.
Returns: (lags, c, line, b) : where:
Other Parameters: linestyle :
Line2D
prop, optional, default: NoneOnly used if usevlines is False.
marker : string, optional, default: ‘o’
Notes
The cross correlation is performed with
numpy.correlate()
withmode
= 2.Note
In addition to the above described arguments, this function can take a data keyword argument. If such a data argument is given, the following arguments are replaced by data[<arg>]:
- All arguments with the following names: ‘x’, ‘y’.
© 2012–2017 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
http://matplotlib.org/2.1.0/api/_as_gen/matplotlib.axes.Axes.xcorr.html