On this page
matplotlib.axes.Axes.acorr
Axes.acorr(self, x, *, data=None, **kwargs)[source]-
Plot the autocorrelation of x.
Parameters: -
xarray-like -
detrendcallable, optional, default: mlab.detrend_none -
x is detrended by the detrend callable. This must be a function
x = detrend(x)accepting and returning annumpy.array. Default is no normalization. -
normedbool, optional, default: True -
If
True, input vectors are normalised to unit length. -
usevlinesbool, optional, default: True -
Determines the plot style.
If
True, vertical lines are plotted from 0 to the acorr value usingAxes.vlines. Additionally, a horizontal line is plotted at y=0 usingAxes.axhline.If
False, markers are plotted at the acorr values usingAxes.plot. -
maxlagsint, optional, default: 10 -
Number of lags to show. If
None, will return all2 * len(x) - 1lags.
Returns: -
lagsarray (length 2*maxlags+1) -
The lag vector.
-
carray (length 2*maxlags+1) -
The auto correlation vector.
-
lineLineCollection or Line2D -
Artistadded to the axes of the correlation:LineCollectionif usevlines is True.Line2Dif usevlines is False.
-
bLine2D or None -
Horizontal line at 0 if usevlines is True None usevlines is False.
Other Parameters: -
linestyleLine2D property, optional -
The linestyle for plotting the data points. Only used if usevlines is
False. -
markerstr, optional, default: 'o' -
The marker for plotting the data points. Only used if usevlines is
False.
Notes
The cross correlation is performed with
numpy.correlate()withmode = "full".Note
In addition to the above described arguments, this function can take a data keyword argument. If such a data argument is given, the following arguments are replaced by data[<arg>]:
- All arguments with the following names: 'x'.
Objects passed as data must support item access (
data[<arg>]) and membership test (<arg> in data). -
Examples using matplotlib.axes.Axes.acorr
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.axes.Axes.acorr.html