On this page
matplotlib.colors.DivergingNorm
class matplotlib.colors.DivergingNorm(**kwargs)[source]- 
    
Bases:
matplotlib.colors.TwoSlopeNorm[Deprecated]
Notes
Deprecated since version 3.2:
Normalize data with a set center.
Useful when mapping data with an unequal rates of change around a conceptual center, e.g., data that range from -2 to 4, with 0 as the midpoint.
Parameters: - 
           
vcenterfloat - 
           
The data value that defines
0.5in the normalization. - 
           
vminfloat, optional - 
           
The data value that defines
0.0in the normalization. Defaults to the min value of the dataset. - 
           
vmaxfloat, optional - 
           
The data value that defines
1.0in the normalization. Defaults to the the max value of the dataset. 
Examples
This maps data value -4000 to 0., 0 to 0.5, and +10000 to 1.0; data between is linearly interpolated:
>>> import matplotlib.colors as mcolors >>> offset = mcolors.TwoSlopeNorm(vmin=-4000., vcenter=0., vmax=10000) >>> data = [-4000., -2000., 0., 2500., 5000., 7500., 10000.] >>> offset(data) array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0]) - 
           
 
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
 https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.colors.DivergingNorm.html