On this page
matplotlib.colors.CenteredNorm
- class matplotlib.colors.CenteredNorm(vcenter=0, halfrange=None, clip=False)[source]
- 
    Bases: matplotlib.colors.NormalizeNormalize symmetrical data around a center (0 by default). Unlike TwoSlopeNorm,CenteredNormapplies an equal rate of change around the center.Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4, with 0 as the midpoint, and with equal rates of change around that midpoint. Parameters: - vcenterfloat, default: 0
- 
           The data value that defines 0.5in the normalization.
- halfrangefloat, optional
- 
           The range of data values that defines a range of 0.5in the normalization, so that vcenter - halfrange is0.0and vcenter + halfrange is1.0in the normalization. Defaults to the largest absolute difference to vcenter for the values in the dataset.
 ExamplesThis maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and below 0.0): >>> import matplotlib.colors as mcolors >>> norm = mcolors.CenteredNorm(halfrange=4.0) >>> data = [-2., 0., 4.] >>> norm(data) array([0.25, 0.5 , 1. ])- __call__(value, clip=None)[source]
- 
      Normalize value data in the [vmin, vmax]interval into the[0.0, 1.0]interval and return it.Parameters: - value
- 
             Data to normalize. 
- clipbool
- 
             If None, defaults toself.clip(which defaults toFalse).
 NotesIf not already initialized, self.vminandself.vmaxare initialized usingself.autoscale_None(value).
 - __init__(vcenter=0, halfrange=None, clip=False)[source]
- 
      Normalize symmetrical data around a center (0 by default). Unlike TwoSlopeNorm,CenteredNormapplies an equal rate of change around the center.Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4, with 0 as the midpoint, and with equal rates of change around that midpoint. Parameters: - vcenterfloat, default: 0
- 
             The data value that defines 0.5in the normalization.
- halfrangefloat, optional
- 
             The range of data values that defines a range of 0.5in the normalization, so that vcenter - halfrange is0.0and vcenter + halfrange is1.0in the normalization. Defaults to the largest absolute difference to vcenter for the values in the dataset.
 ExamplesThis maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and below 0.0): >>> import matplotlib.colors as mcolors >>> norm = mcolors.CenteredNorm(halfrange=4.0) >>> data = [-2., 0., 4.] >>> norm(data) array([0.25, 0.5 , 1. ])
 - __module__= 'matplotlib.colors'
 - __slotnames__= []
 - autoscale(A)[source]
- 
      Set halfrange to max(abs(A-vcenter)), then set vmin and vmax.
 - autoscale_None(A)[source]
- 
      Set vmin and vmax. 
 - property halfrange
 - property vcenter
 
Examples using matplotlib.colors.CenteredNorm
  
  © 2012–2021 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
 https://matplotlib.org/3.4.3/api/_as_gen/matplotlib.colors.CenteredNorm.html