On this page
matplotlib.colors.NoNorm
- class matplotlib.colors.NoNorm(vmin=None, vmax=None, clip=False)[source]
- 
    Bases: matplotlib.colors.NormalizeDummy replacement for Normalize, for the case where we want to use indices directly in aScalarMappable.Parameters: - vmin, vmaxfloat or None
- 
           If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e., __call__(A)callsautoscale_None(A).
- clipbool, default: False
- 
           If Truevalues falling outside the range[vmin, vmax], are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalsemasked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is clip=False.
 NotesReturns 0 if vmin == vmax.- __call__(value, clip=None)[source]
- 
      Normalize value data in the [vmin, vmax]interval into the[0.0, 1.0]interval and return it.Parameters: - value
- 
             Data to normalize. 
- clipbool
- 
             If None, defaults toself.clip(which defaults toFalse).
 NotesIf not already initialized, self.vminandself.vmaxare initialized usingself.autoscale_None(value).
 - __module__= 'matplotlib.colors'
 - __slotnames__= []
 - inverse(value)[source]
 
Examples using matplotlib.colors.NoNorm
  © 2012–2021 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
 https://matplotlib.org/3.4.3/api/_as_gen/matplotlib.colors.NoNorm.html