On this page
matplotlib.colors.LogNorm
- class
matplotlib.colors.LogNorm(vmin=None, vmax=None, clip=False)[source] -
Bases:
matplotlib.colors.LogNormNormalize a given value to the 0-1 range on a log scale.
__call__(value, clip=None)-
Normalize value data in the
[vmin, vmax]interval into the[0.0, 1.0]interval and return it.Parameters: - value
-
Data to normalize.
- clipbool
-
If
None, defaults toself.clip(which defaults toFalse).
Notes
If not already initialized,
self.vminandself.vmaxare initialized usingself.autoscale_None(value).
__init__(vmin=None, vmax=None, clip=False)-
Parameters: - vmin, vmaxfloat or None
-
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)callsautoscale_None(A). - clipbool, default: False
-
If
Truevalues falling outside the range[vmin, vmax], are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalsemasked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.
Notes
Returns 0 if
vmin == vmax.
__module__= 'matplotlib.colors'
__slotnames__= []
inverse(value)
Examples using matplotlib.colors.LogNorm
© 2012–2021 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.4.3/api/_as_gen/matplotlib.colors.LogNorm.html