On this page
matplotlib.colors.Normalize
- class
matplotlib.colors.
Normalize
(vmin=None, vmax=None, clip=False)[source] -
Bases:
object
A class which, when called, linearly normalizes data into the
[0.0, 1.0]
interval.Parameters: - vmin, vmaxfloat or None
-
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)
callsautoscale_None(A)
. - clipbool, default: False
-
If
True
values falling outside the range[vmin, vmax]
, are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalse
masked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False
.
Notes
Returns 0 if
vmin == vmax
.__call__
(value, clip=None)[source]-
Normalize value data in the
[vmin, vmax]
interval into the[0.0, 1.0]
interval and return it.Parameters: - value
-
Data to normalize.
- clipbool
-
If
None
, defaults toself.clip
(which defaults toFalse
).
Notes
If not already initialized,
self.vmin
andself.vmax
are initialized usingself.autoscale_None(value)
.
__dict__
= mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n A class which, when called, linearly normalizes data into the\n ``[0.0, 1.0]`` interval.\n ', '__init__': <function Normalize.__init__>, 'process_value': <staticmethod object>, '__call__': <function Normalize.__call__>, 'inverse': <function Normalize.inverse>, 'autoscale': <function Normalize.autoscale>, 'autoscale_None': <function Normalize.autoscale_None>, 'scaled': <function Normalize.scaled>, '__dict__': <attribute '__dict__' of 'Normalize' objects>, '__weakref__': <attribute '__weakref__' of 'Normalize' objects>, '__slotnames__': [], '__annotations__': {}})
__init__
(vmin=None, vmax=None, clip=False)[source]-
Parameters: - vmin, vmaxfloat or None
-
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)
callsautoscale_None(A)
. - clipbool, default: False
-
If
True
values falling outside the range[vmin, vmax]
, are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalse
masked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False
.
Notes
Returns 0 if
vmin == vmax
.
__module__
= 'matplotlib.colors'
__slotnames__
= []
__weakref__
-
list of weak references to the object (if defined)
autoscale
(A)[source]-
Set vmin, vmax to min, max of A.
autoscale_None
(A)[source]-
If vmin or vmax are not set, use the min/max of A to set them.
inverse
(value)[source]
- static
process_value
(value)[source] -
Homogenize the input value for easy and efficient normalization.
value can be a scalar or sequence.
Returns: - resultmasked array
-
Masked array with the same shape as value.
- is_scalarbool
-
Whether value is a scalar.
Notes
Float dtypes are preserved; integer types with two bytes or smaller are converted to np.float32, and larger types are converted to np.float64. Preserving float32 when possible, and using in-place operations, greatly improves speed for large arrays.
scaled
()[source]-
Return whether vmin and vmax are set.
Examples using matplotlib.colors.Normalize
© 2012–2021 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.4.3/api/_as_gen/matplotlib.colors.Normalize.html