On this page
std/math
Source EditConstructive mathematics is naturally typed. -- Simon Thompson
Basic math routines for Nim.
Note that the trigonometric functions naturally operate on radians. The helper functions degToRad and radToDeg provide conversion between radians and degrees.
Example:
import std/math
from std/fenv import epsilon
from std/random import rand
proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
# Generates values from a normal distribution.
# Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
var u1: float
var u2: float
while true:
u1 = rand(1.0)
u2 = rand(1.0)
if u1 > epsilon(float): break
let mag = sigma * sqrt(-2 * ln(u1))
let z0 = mag * cos(2 * PI * u2) + mu
let z1 = mag * sin(2 * PI * u2) + mu
(z0, z1)
echo generateGaussianNoise()
This module is available for the JavaScript target.
See also
- complex module for complex numbers and their mathematical operations
- rationals module for rational numbers and their mathematical operations
- fenv module for handling of floating-point rounding and exceptions (overflow, zero-divide, etc.)
- random module for a fast and tiny random number generator
- stats module for statistical analysis
- strformat module for formatting floats for printing
- system module for some very basic and trivial math operators (
shr
,shl
,xor
,clamp
, etc.)
Imports
Types
-
FloatClass = enum fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero fcNegZero, ## value is the negative zero fcNan, ## value is Not a Number (NaN) fcInf, ## value is positive infinity fcNegInf ## value is negative infinity
- Describes the class a floating point value belongs to. This is the type that is returned by the classify func. Source Edit
Consts
-
MaxFloat32Precision = 8
-
Maximum number of meaningful digits after the decimal point for Nim's
float32
type. Source Edit -
MaxFloat64Precision = 16
-
Maximum number of meaningful digits after the decimal point for Nim's
float64
type. Source Edit -
MaxFloatPrecision = 16
-
Maximum number of meaningful digits after the decimal point for Nim's
float
type. Source Edit
Procs
-
func almostEqual[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. inline.}
-
Checks if two float values are almost equal, using the machine epsilon.
unitsInLastPlace
is the max number of units in the last place difference tolerated when comparing two numbers. The larger the value, the more error is allowed. A0
value means that two numbers must be exactly the same to be considered equal.The machine epsilon has to be scaled to the magnitude of the values used and multiplied by the desired precision in ULPs unless the difference is subnormal.
Example:
Source EditdoAssert almostEqual(PI, 3.14159265358979) doAssert almostEqual(Inf, Inf) doAssert not almostEqual(NaN, NaN)
-
func arctan(x: float32): float32 {.importc: "atanf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func arctan2(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func arctan2(y, x: float64): float64 {.importc: "atan2", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Calculate the arc tangent of
y/x
.It produces correct results even when the resulting angle is near
PI/2
or-PI/2
(x
near 0).See also:
Example:
Source EditdoAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0) doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
-
func binom(n, k: int): int {....raises: [], tags: [], forbids: [].}
-
Computes the binomial coefficient.
Example:
Source EditdoAssert binom(6, 2) == 15 doAssert binom(-6, 2) == 1 doAssert binom(6, 0) == 1
-
func cbrt(x: float32): float32 {.importc: "cbrtf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func cbrt(x: float64): float64 {.importc: "cbrt", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the cube root of
x
.See also:
- sqrt func for the square root
Example:
Source EditdoAssert almostEqual(cbrt(8.0), 2.0) doAssert almostEqual(cbrt(2.197), 1.3) doAssert almostEqual(cbrt(-27.0), -3.0)
-
func ceil(x: float32): float32 {.importc: "ceilf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func ceilDiv[T: SomeInteger](x, y: T): T {.inline.}
-
Ceil division is conceptually defined as
ceil(x / y)
.Assumes
x >= 0
andy > 0
(andx + y - 1 <= high(T)
if T is SomeUnsignedInt).This is different from the system.div operator, which works like
trunc(x / y)
. That is,div
rounds towards0
andceilDiv
rounds up.This function has the above input limitation, because that allows the compiler to generate faster code and it is rarely used with negative values or unsigned integers close to
high(T)/2
. If you need aceilDiv
that works with any input, see: https://github.com/demotomohiro/divmath.See also:
- system.div proc for integer division
- floorDiv func for integer division which rounds down.
Example:
Source Editassert ceilDiv(12, 3) == 4 assert ceilDiv(13, 3) == 5
-
func clamp[T](val: T; bounds: Slice[T]): T {.inline.}
-
Like
system.clamp
, but takes a slice, so you can easily clamp within a range.Example:
Source Editassert clamp(10, 1 .. 5) == 5 assert clamp(1, 1 .. 3) == 1 type A = enum a0, a1, a2, a3, a4, a5 assert a1.clamp(a2..a4) == a2 assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9) doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
-
func classify(x: float): FloatClass {....raises: [], tags: [], forbids: [].}
-
Classifies a floating point value.
Returns
x
's class as specified by the FloatClass enum. Doesn't work with--passc:-ffast-math
.Example:
Source EditdoAssert classify(0.3) == fcNormal doAssert classify(0.0) == fcZero doAssert classify(0.3 / 0.0) == fcInf doAssert classify(-0.3 / 0.0) == fcNegInf doAssert classify(5.0e-324) == fcSubnormal
-
func copySign[T: SomeFloat](x, y: T): T {.inline.}
-
Returns a value with the magnitude of
x
and the sign ofy
; this works even if x or y are NaN, infinity or zero, all of which can carry a sign.Example:
Source EditdoAssert copySign(10.0, 1.0) == 10.0 doAssert copySign(10.0, -1.0) == -10.0 doAssert copySign(-Inf, -0.0) == -Inf doAssert copySign(NaN, 1.0).isNaN doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
-
func cos(x: float32): float32 {.importc: "cosf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func cosh(x: float32): float32 {.importc: "coshf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func cosh(x: float64): float64 {.importc: "cosh", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the hyperbolic cosine of
x
.See also:
Example:
Source EditdoAssert almostEqual(cosh(0.0), 1.0) doAssert almostEqual(cosh(1.0), 1.543080634815244)
-
func cumsum[T](x: var openArray[T])
-
Transforms
x
in-place (must be declared asvar
) into its cumulative (aka prefix) summation.See also:
- sum func
- cumsummed func for a version which returns a cumsummed sequence
Example:
Source Editvar a = [1, 2, 3, 4] cumsum(a) doAssert a == @[1, 3, 6, 10]
-
func cumsummed[T](x: openArray[T]): seq[T]
-
Returns the cumulative (aka prefix) summation of
x
.If
x
is empty,@[]
is returned.See also:
- sum func
- cumsum func for the in-place version
Example:
Source EditdoAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
-
func erf(x: float32): float32 {.importc: "erff", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func erf(x: float64): float64 {.importc: "erf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the error function for
x
.Note: Not available for the JS backend.
Source Edit -
func erfc(x: float32): float32 {.importc: "erfcf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func erfc(x: float64): float64 {.importc: "erfc", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the complementary error function for
x
.Note: Not available for the JS backend.
Source Edit -
func exp(x: float32): float32 {.importc: "expf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func floor(x: float32): float32 {.importc: "floorf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func floorDiv[T: SomeInteger](x, y: T): T
-
Floor division is conceptually defined as
floor(x / y)
.This is different from the system.div operator, which is defined as
trunc(x / y)
. That is,div
rounds towards0
andfloorDiv
rounds down.See also:
- system.div proc for integer division
- floorMod func for Python-like (
%
operator) behavior
Example:
Source EditdoAssert floorDiv( 13, 3) == 4 doAssert floorDiv(-13, 3) == -5 doAssert floorDiv( 13, -3) == -5 doAssert floorDiv(-13, -3) == 4
-
func floorMod[T: SomeNumber](x, y: T): T
-
Floor modulo is conceptually defined as
x - (floorDiv(x, y) * y)
.This func behaves the same as the
%
operator in Python.See also:
Example:
Source EditdoAssert floorMod( 13, 3) == 1 doAssert floorMod(-13, 3) == 2 doAssert floorMod( 13, -3) == -2 doAssert floorMod(-13, -3) == -1
-
func frexp[T: float32 | float64](x: T): tuple[frac: T, exp: int] {.inline.}
-
Splits
x
into a normalized fractionfrac
and an integral power of 2exp
, such thatabs(frac) in 0.5..<1
andx == frac * 2 ^ exp
, except for special cases shown below.Example:
Source EditdoAssert frexp(8.0) == (0.5, 4) doAssert frexp(-8.0) == (-0.5, 4) doAssert frexp(0.0) == (0.0, 0) # special cases: when sizeof(int) == 8: doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0 doAssert frexp(Inf).frac == Inf # +- Inf preserved doAssert frexp(NaN).frac.isNaN
-
func gamma(x: float32): float32 {.importc: "tgammaf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func gamma(x: float64): float64 {.importc: "tgamma", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the gamma function for
x
.Note: Not available for the JS backend.
See also:
- lgamma func for the natural logarithm of the gamma function
Example:
Source EditdoAssert almostEqual(gamma(1.0), 1.0) doAssert almostEqual(gamma(4.0), 6.0) doAssert almostEqual(gamma(11.0), 3628800.0)
-
func gcd(x, y: SomeInteger): SomeInteger
-
Computes the greatest common (positive) divisor of
x
andy
, using the binary GCD (aka Stein's) algorithm.See also:
Example:
Source EditdoAssert gcd(12, 8) == 4 doAssert gcd(17, 63) == 1
-
func gcd[T](x, y: T): T
-
Computes the greatest common (positive) divisor of
x
andy
.Note that for floats, the result cannot always be interpreted as "greatest decimal
z
such thatz*N == x and z*M == y
where N and M are positive integers".See also:
Example:
Source EditdoAssert gcd(13.5, 9.0) == 4.5
-
func hypot(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func hypot(x, y: float64): float64 {.importc: "hypot", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the length of the hypotenuse of a right-angle triangle with
x
as its base andy
as its height. Equivalent tosqrt(x*x + y*y)
.Example:
Source EditdoAssert almostEqual(hypot(3.0, 4.0), 5.0)
-
func isPowerOfTwo(x: int): bool {....raises: [], tags: [], forbids: [].}
-
Returns
true
, ifx
is a power of two,false
otherwise.Zero and negative numbers are not a power of two.
See also:
Example:
Source EditdoAssert isPowerOfTwo(16) doAssert not isPowerOfTwo(5) doAssert not isPowerOfTwo(0) doAssert not isPowerOfTwo(-16)
-
func lgamma(x: float32): float32 {.importc: "lgammaf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func lgamma(x: float64): float64 {.importc: "lgamma", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the natural logarithm of the gamma function for
x
.Note: Not available for the JS backend.
See also:
- gamma func for gamma function
-
func ln(x: float32): float32 {.importc: "logf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func ln(x: float64): float64 {.importc: "log", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the natural logarithm of
x
.See also:
Example:
Source EditdoAssert almostEqual(ln(exp(4.0)), 4.0) doAssert almostEqual(ln(1.0), 0.0) doAssert almostEqual(ln(0.0), -Inf) doAssert ln(-7.0).isNaN
-
func log2(x: float32): float32 {.importc: "log2f", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func log2(x: float64): float64 {.importc: "log2", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the binary logarithm (base 2) of
x
.See also:
Example:
Source EditdoAssert almostEqual(log2(8.0), 3.0) doAssert almostEqual(log2(1.0), 0.0) doAssert almostEqual(log2(0.0), -Inf) doAssert log2(-2.0).isNaN
-
func log10(x: float32): float32 {.importc: "log10f", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func `mod`(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func `mod`(x, y: float64): float64 {.importc: "fmod", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the modulo operation for float values (the remainder of
x
divided byy
).See also:
- floorMod func for Python-like (
%
operator) behavior
Example:
Source EditdoAssert 6.5 mod 2.5 == 1.5 doAssert -6.5 mod 2.5 == -1.5 doAssert 6.5 mod -2.5 == 1.5 doAssert -6.5 mod -2.5 == -1.5
- floorMod func for Python-like (
-
func nextPowerOfTwo(x: int): int {....raises: [], tags: [], forbids: [].}
-
Returns
x
rounded up to the nearest power of two.Zero and negative numbers get rounded up to 1.
See also:
Example:
Source EditdoAssert nextPowerOfTwo(16) == 16 doAssert nextPowerOfTwo(5) == 8 doAssert nextPowerOfTwo(0) == 1 doAssert nextPowerOfTwo(-16) == 1
-
func pow(x, y: float32): float32 {.importc: "powf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func pow(x, y: float64): float64 {.importc: "pow", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes
x
raised to the power ofy
.To compute the power between integers (e.g. 2^6), use the ^ func.
See also:
Example:
Source EditdoAssert almostEqual(pow(100, 1.5), 1000.0) doAssert almostEqual(pow(16.0, 0.5), 4.0)
-
func round(x: float32): float32 {.importc: "roundf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func round(x: float64): float64 {.importc: "round", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Rounds a float to zero decimal places.
Used internally by the round func when the specified number of places is 0.
See also:
- round func for rounding to the specific number of decimal places
- floor func
- ceil func
- trunc func
Example:
Source EditdoAssert round(3.4) == 3.0 doAssert round(3.5) == 4.0 doAssert round(4.5) == 5.0
-
func round[T: float32 | float64](x: T; places: int): T
-
Decimal rounding on a binary floating point number.
This function is NOT reliable. Floating point numbers cannot hold non integer decimals precisely. If
places
is 0 (or omitted), round to the nearest integral value following normal mathematical rounding rules (e.g.round(54.5) -> 55.0
). Ifplaces
is greater than 0, round to the given number of decimal places, e.g.round(54.346, 2) -> 54.350000000000001421…
. Ifplaces
is negative, round to the left of the decimal place, e.g.round(537.345, -1) -> 540.0
.Example:
Source EditdoAssert round(PI, 2) == 3.14 doAssert round(PI, 4) == 3.1416
-
func sin(x: float32): float32 {.importc: "sinf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func sinh(x: float32): float32 {.importc: "sinhf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func sinh(x: float64): float64 {.importc: "sinh", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the hyperbolic sine of
x
.See also:
Example:
Source EditdoAssert almostEqual(sinh(0.0), 0.0) doAssert almostEqual(sinh(1.0), 1.175201193643801)
-
func splitDecimal[T: float32 | float64](x: T): tuple[intpart: T, floatpart: T]
-
Breaks
x
into an integer and a fractional part.Returns a tuple containing
intpart
andfloatpart
, representing the integer part and the fractional part, respectively.Both parts have the same sign as
x
. Analogous to themodf
function in C.Example:
Source EditdoAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25) doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
-
func tan(x: float32): float32 {.importc: "tanf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func tanh(x: float32): float32 {.importc: "tanhf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
-
func tanh(x: float64): float64 {.importc: "tanh", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
-
Computes the hyperbolic tangent of
x
.See also:
Example:
Source EditdoAssert almostEqual(tanh(0.0), 0.0) doAssert almostEqual(tanh(1.0), 0.7615941559557649)
-
func trunc(x: float32): float32 {.importc: "truncf", header: "<math.h>", ...raises: [], tags: [], forbids: [].}
- Source Edit
© 2006–2024 Andreas Rumpf
Licensed under the MIT License.
https://nim-lang.org/docs/math.html