On this page
numpy.add
numpy.add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'add'>
-
Add arguments element-wise.
Parameters: x1, x2 : array_like
The arrays to be added. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which may be the shape of one or the other).out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None
, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs
For other keyword-only arguments, see the ufunc docs.
Returns: add : ndarray or scalar
The sum of
x1
andx2
, element-wise. Returns a scalar if bothx1
andx2
are scalars.Notes
Equivalent to
x1
+x2
in terms of array broadcasting.Examples
>>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]])
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.add.html