On this page
numpy.clip
numpy.clip(a, a_min, a_max, out=None)
[source]-
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1]
is specified, values smaller than 0 become 0, and values larger than 1 become 1.Parameters: a : array_like
Array containing elements to clip.
a_min : scalar or array_like or
None
Minimum value. If
None
, clipping is not performed on lower interval edge. Not more than one ofa_min
anda_max
may beNone
.a_max : scalar or array_like or
None
Maximum value. If
None
, clipping is not performed on upper interval edge. Not more than one ofa_min
anda_max
may beNone
. Ifa_min
ora_max
are array_like, then the three arrays will be broadcasted to match their shapes.out : ndarray, optional
The results will be placed in this array. It may be the input array for in-place clipping.
out
must be of the right shape to hold the output. Its type is preserved.Returns: clipped_array : ndarray
An array with the elements of
a
, but where values <a_min
are replaced witha_min
, and those >a_max
witha_max
.See also
numpy.doc.ufuncs
- Section “Output arguments”
Examples
>>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.clip.html