On this page
numpy.linalg.inv
numpy.linalg.inv(a)[source]- 
    
Compute the (multiplicative) inverse of a matrix.
Given a square matrix
a, return the matrixainvsatisfyingdot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).Parameters: - 
           
a : (…, M, M) array_like - 
           
Matrix to be inverted.
 
Returns: - 
           
ainv : (…, M, M) ndarray or matrix - 
           
(Multiplicative) inverse of the matrix
a. 
Raises: - LinAlgError
 - 
           
If
ais not square or inversion fails. 
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalgdocumentation for details.Examples
>>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) TrueIf a is a matrix object, then the return value is a matrix as well:
>>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]])Inverses of several matrices can be computed at once:
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.linalg.inv.html