On this page
numpy.ma.asarray
numpy.ma.asarray(a, dtype=None, order=None)[source]- 
    
Convert the input to a masked array of the given data-type.
No copy is performed if the input is already an
ndarray. Ifais a subclass ofMaskedArray, a base classMaskedArrayis returned.Parameters: - 
           
a : array_like - 
           
Input data, in any form that can be converted to a masked array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.
 - 
           
dtype : dtype, optional - 
           
By default, the data-type is inferred from the input data.
 - 
           
order : {‘C’, ‘F’}, optional - 
           
Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representation. Default is ‘C’.
 
Returns: - 
           
out : MaskedArray - 
           
Masked array interpretation of
a. 
See also
asanyarray- 
       Similar to 
asarray, but conserves subclasses. 
Examples
>>> x = np.arange(10.).reshape(2, 5) >>> x array([[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]]) >>> np.ma.asarray(x) masked_array(data = [[ 0. 1. 2. 3. 4.] [ 5. 6. 7. 8. 9.]], mask = False, fill_value = 1e+20) >>> type(np.ma.asarray(x)) <class 'numpy.ma.core.MaskedArray'> - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.asarray.html