On this page
numpy.ma.clip
numpy.ma.clip(a, a_min, a_max, out=None)[source]- 
    
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1]is specified, values smaller than 0 become 0, and values larger than 1 become 1.Parameters: - 
           
a : array_like - 
           
Array containing elements to clip.
 - 
           
a_min : scalar or array_like or None - 
           
Minimum value. If
None, clipping is not performed on lower interval edge. Not more than one ofa_minanda_maxmay beNone. - 
           
a_max : scalar or array_like or None - 
           
Maximum value. If
None, clipping is not performed on upper interval edge. Not more than one ofa_minanda_maxmay beNone. Ifa_minora_maxare array_like, then the three arrays will be broadcasted to match their shapes. - 
           
out : ndarray, optional - 
           
The results will be placed in this array. It may be the input array for in-place clipping.
outmust be of the right shape to hold the output. Its type is preserved. 
Returns: - 
           
clipped_array : ndarray - 
           
An array with the elements of
a, but where values <a_minare replaced witha_min, and those >a_maxwitha_max. 
See also
numpy.doc.ufuncs- Section “Output arguments”
 
Examples
>>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.clip.html