On this page
numpy.ma.count_masked
numpy.ma.count_masked(arr, axis=None)[source]- 
    
Count the number of masked elements along the given axis.
Parameters: - 
           
arr : array_like - 
           
An array with (possibly) masked elements.
 - 
           
axis : int, optional - 
           
Axis along which to count. If None (default), a flattened version of the array is used.
 
Returns: - 
           
count : int, ndarray - 
           
The total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis.
 
See also
MaskedArray.count- Count non-masked elements.
 
Examples
>>> import numpy.ma as ma >>> a = np.arange(9).reshape((3,3)) >>> a = ma.array(a) >>> a[1, 0] = ma.masked >>> a[1, 2] = ma.masked >>> a[2, 1] = ma.masked >>> a masked_array(data = [[0 1 2] [-- 4 --] [6 -- 8]], mask = [[False False False] [ True False True] [False True False]], fill_value=999999) >>> ma.count_masked(a) 3When the
axiskeyword is used an array is returned.>>> ma.count_masked(a, axis=0) array([1, 1, 1]) >>> ma.count_masked(a, axis=1) array([0, 2, 1]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.count_masked.html