On this page
numpy.ma.innerproduct
numpy.ma.innerproduct(a, b)[source]- 
    
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.
Parameters: - 
           
a, b : array_like - 
           
If
aandbare nonscalar, their last dimensions must match. 
Returns: - 
           
out : ndarray - 
           
out.shape = a.shape[:-1] + b.shape[:-1] 
Raises: - ValueError
 - 
           
If the last dimension of
aandbhas different size. 
See also
tensordot- Sum products over arbitrary axes.
 dot- 
       Generalised matrix product, using second last dimension of 
b. einsum- Einstein summation convention.
 
Notes
Masked values are replaced by 0.
For vectors (1-D arrays) it computes the ordinary inner-product:
np.inner(a, b) = sum(a[:]*b[:])More generally, if
ndim(a) = r > 0andndim(b) = s > 0:np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))or explicitly:
np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])In addition
aorbmay be scalars, in which case:np.inner(a,b) = a*bExamples
Ordinary inner product for vectors:
>>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]])An example where
bis a scalar:>>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ma.innerproduct.html