On this page
numpy.polynomial.hermite.hermder
numpy.polynomial.hermite.hermder(c, m=1, scl=1, axis=0)[source]- 
    
Differentiate a Hermite series.
Returns the Hermite series coefficients
cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*H_0 + 2*H_1 + 3*H_2while [[1,2],[1,2]] represents1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)if axis=0 isxand axis=1 isy.Parameters: - 
           
c : array_like - 
           
Array of Hermite series coefficients. If
cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. - 
           
m : int, optional - 
           
Number of derivatives taken, must be non-negative. (Default: 1)
 - 
           
scl : scalar, optional - 
           
Each differentiation is multiplied by
scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1) - 
           
axis : int, optional - 
           
Axis over which the derivative is taken. (Default: 0).
New in version 1.7.0.
 
Returns: - 
           
der : ndarray - 
           
Hermite series of the derivative.
 
See also
Notes
In general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.
Examples
>>> from numpy.polynomial.hermite import hermder >>> hermder([ 1. , 0.5, 0.5, 0.5]) array([ 1., 2., 3.]) >>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2) array([ 1., 2., 3.]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.polynomial.hermite.hermder.html