On this page
numpy.polynomial.hermite_e.hermeder
numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)[source]- 
    
Differentiate a Hermite_e series.
Returns the series coefficients
cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*He_0 + 2*He_1 + 3*He_2while [[1,2],[1,2]] represents1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)if axis=0 isxand axis=1 isy.Parameters: - 
           
c : array_like - 
           
Array of Hermite_e series coefficients. If
cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. - 
           
m : int, optional - 
           
Number of derivatives taken, must be non-negative. (Default: 1)
 - 
           
scl : scalar, optional - 
           
Each differentiation is multiplied by
scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1) - 
           
axis : int, optional - 
           
Axis over which the derivative is taken. (Default: 0).
New in version 1.7.0.
 
Returns: - 
           
der : ndarray - 
           
Hermite series of the derivative.
 
See also
Notes
In general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.
Examples
>>> from numpy.polynomial.hermite_e import hermeder >>> hermeder([ 1., 1., 1., 1.]) array([ 1., 2., 3.]) >>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2) array([ 1., 2., 3.]) - 
           
 
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
 https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.polynomial.hermite_e.hermeder.html