On this page
numpy.dtype
class numpy.dtype(obj, align=False, copy=False)[source]-
Create a data type object.
A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be constructed from different combinations of fundamental numeric types.
Parameters: - obj
-
Object to be converted to a data type object.
-
align : bool, optional -
Add padding to the fields to match what a C compiler would output for a similar C-struct. Can be
Trueonly ifobjis a dictionary or a comma-separated string. If a struct dtype is being created, this also sets a sticky alignment flagisalignedstruct. -
copy : bool, optional -
Make a new copy of the data-type object. If
False, the result may just be a reference to a built-in data-type object.
See also
Examples
Using array-scalar type:
>>> np.dtype(np.int16) dtype('int16')Structured type, one field name ‘f1’, containing int16:
>>> np.dtype([('f1', np.int16)]) dtype([('f1', '<i2')])Structured type, one field named ‘f1’, in itself containing a structured type with one field:
>>> np.dtype([('f1', [('f1', np.int16)])]) dtype([('f1', [('f1', '<i2')])])Structured type, two fields: the first field contains an unsigned int, the second an int32:
>>> np.dtype([('f1', np.uint64), ('f2', np.int32)]) dtype([('f1', '<u8'), ('f2', '<i4')])Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')]) dtype([('a', '<f8'), ('b', 'S10')])Using comma-separated field formats. The shape is (2,3):
>>> np.dtype("i4, (2,3)f8") dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])Using tuples.
intis a fixed type, 3 the field’s shape.voidis a flexible type, here of size 10:>>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)]) dtype([('hello', '<i8', (3,)), ('world', 'V10')])Subdivide
int16into 2int8’s, called x and y. 0 and 1 are the offsets in bytes:>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))Using dictionaries. Two fields named ‘gender’ and ‘age’:
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) dtype([('gender', 'S1'), ('age', 'u1')])Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) dtype([('surname', 'S25'), ('age', 'u1')])Attributes: -
alignment -
The required alignment (bytes) of this data-type according to the compiler.
-
base -
Returns dtype for the base element of the subarrays, regardless of their dimension or shape.
-
byteorder -
A character indicating the byte-order of this data-type object.
-
char -
A unique character code for each of the 21 different built-in types.
-
descr -
__array_interface__description of the data-type. -
fields -
Dictionary of named fields defined for this data type, or
None. -
flags -
Bit-flags describing how this data type is to be interpreted.
-
hasobject -
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.
-
isalignedstruct -
Boolean indicating whether the dtype is a struct which maintains field alignment.
-
isbuiltin -
Integer indicating how this dtype relates to the built-in dtypes.
-
isnative -
Boolean indicating whether the byte order of this dtype is native to the platform.
-
itemsize -
The element size of this data-type object.
-
kind -
A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.
- metadata
-
name -
A bit-width name for this data-type.
-
names -
Ordered list of field names, or
Noneif there are no fields. -
ndim -
Number of dimensions of the sub-array if this data type describes a sub-array, and
0otherwise. -
num -
A unique number for each of the 21 different built-in types.
-
shape -
Shape tuple of the sub-array if this data type describes a sub-array, and
()otherwise. -
str -
The array-protocol typestring of this data-type object.
-
subdtype -
Tuple
(item_dtype, shape)if thisdtypedescribes a sub-array, and None otherwise. -
type -
The type object used to instantiate a scalar of this data-type.
Methods
newbyteorder([new_order])Return a new dtype with a different byte order.
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.dtype.html