On this page
numpy.interp
numpy.interp(x, xp, fp, left=None, right=None, period=None)[source]-
One-dimensional linear interpolation.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (
xp,fp), evaluated atx.Parameters: -
x : array_like -
The x-coordinates at which to evaluate the interpolated values.
-
xp : 1-D sequence of floats -
The x-coordinates of the data points, must be increasing if argument
periodis not specified. Otherwise,xpis internally sorted after normalizing the periodic boundaries withxp = xp % period. -
fp : 1-D sequence of float or complex -
The y-coordinates of the data points, same length as
xp. -
left : optional float or complex corresponding to fp -
Value to return for
x < xp[0], default isfp[0]. -
right : optional float or complex corresponding to fp -
Value to return for
x > xp[-1], default isfp[-1]. -
period : None or float, optional -
A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters
leftandrightare ignored ifperiodis specified.New in version 1.10.0.
Returns: -
y : float or complex (corresponding to fp) or ndarray -
The interpolated values, same shape as
x.
Raises: - ValueError
-
If
xpandfphave different length Ifxporfpare not 1-D sequences Ifperiod == 0
Notes
Does not check that the x-coordinate sequence
xpis increasing. Ifxpis not increasing, the results are nonsense. A simple check for increasing is:np.all(np.diff(xp) > 0)Examples
>>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0Plot an interpolant to the sine function:
>>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show()Interpolation with periodic x-coordinates:
>>> x = [-180, -170, -185, 185, -10, -5, 0, 365] >>> xp = [190, -190, 350, -350] >>> fp = [5, 10, 3, 4] >>> np.interp(x, xp, fp, period=360) array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75])Complex interpolation:
>>> x = [1.5, 4.0] >>> xp = [2,3,5] >>> fp = [1.0j, 0, 2+3j] >>> np.interp(x, xp, fp) array([0.+1.j , 1.+1.5j]) -
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.interp.html